# pymagsac **Repository Path**: jonbakerfish/pymagsac ## Basic Information - **Project Name**: pymagsac - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-11 - **Last Updated**: 2024-10-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # pymagsac This repository contains an Python wrapper of [MAGSAC](https://arxiv.org/abs/1803.07469.pdf). Daniel Barath, Jana Noskova and Jiri Matas; MAGSAC: Marginalizing sample consensus, CVPR 2019 https://github.com/danini/magsac -- main repo. If you use the algorithm, please cite ``` @inproceedings{barath2019magsac, author = {Barath, Daniel and Matas, Jiri and Noskova, Jana}, title = {MAGSAC: marginalizing sample consensus}, booktitle = {Conference on Computer Vision and Pattern Recognition}, year = {2019}, } @inproceedings{barath2019magsacplusplus, author = {Barath, Daniel and Noskova, Jana and Ivashechkin, Maksym and Matas, Jiri}, title = {MAGSAC++, a fast, reliable and accurate robust estimator}, booktitle = {arXiv preprint:1912.05909}, year = {2019}, } ``` If you use it for fundamental matrix estimation with DEGENSAC turned on, please cite ``` @inproceedings{Chum2005, author = {Chum, Ondrej and Werner, Tomas and Matas, Jiri}, title = {Two-View Geometry Estimation Unaffected by a Dominant Plane}, booktitle = {CVPR}, year = {2005}, } ``` # Performance Magsac is the state of the art according to the recent study Yin et.al."[Image Matching across Wide Baselines: From Paper to Practice](https://arxiv.org/abs/2003.01587.pdf)", 2020. ![IMW-benchmark](img/ransacs.png) ![IMW-Challenge](img/ransacs2.png) # Installation To build and install `python_cpp_example`, clone or download this repository and then, from within the repository, run: ```bash python3 ./setup.py install ``` or ```bash pip3 install . ``` # Example of usage ```python import pymagsac H, mask = pymagsac.findHomography(src_pts, dst_pts, 3.0) F, mask = pymagsac.findFundamentalMatrix(src_pts, dst_pts, 3.0) ``` See also this [notebook](examples/example.ipynb) # Requirements - Python 3 - CMake 2.8.12 or higher - OpenCV 3.4 - A modern compiler with C++14 support # Acknowledgements This wrapper part is based on great [Benjamin Jack `python_cpp_example`](https://github.com/benjaminjack/python_cpp_example).