# IOBR **Repository Path**: joyeric_admin_admin/IOBR ## Basic Information - **Project Name**: IOBR - **Description**: 1. IOBR整合了10种已发表的大家比较认可的肿瘤微环境解析方法:CIBERSORT (fraction, absolute), TIMER, xCell, MCP-counter, ESTIMATE, EPIC, IPS, quanTIseq, lsei; 2. IOBR收集了255个已经发表的signatures,包括肿瘤微环境相关的,代谢相关的,m6A, 外泌体,铁凋亡和错配修复等通路 - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-05-22 - **Last Updated**: 2023-10-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # IOBR: Immuno-Oncology Biological Research IOBR is an R package to perform comprehensive analysis of tumor microenvironment and signatures for immuno-oncology. ### 1.Introduction - 1. IOBR collects 255 published signature gene sets, involving tumor microenvironment, tumor metabolism, m6A, exosomes, microsatellite instability, and tertiary lymphoid structure. Running the function `signature_collection_citation` to attain the source papers. The function `signature_collection` returns the detail signature genes of all given signatures. - 2. IOBR integrates 8 published methodologies decoding tumor microenvironment (TME) contexture: `CIBERSORT`, `TIMER`, `xCell`, `MCPcounter`, `ESITMATE`, `EPIC`, `IPS`, `quanTIseq`; - 3. IOBR adopts three computational methods to calculate the signature score, comprising `PCA`,`z-score`, and `ssGSEA`; - 4. IOBR integrates multiple approaches for variable transition, visualization, batch survival analysis, feature selection, and statistical analysis. - 5. IOBR also integrates methods for batch visualization of subgroup characteristics. #### IOBR package workflow
IOBR logo
### 2.Installation It is essential that you have R 3.6.3 or above already installed on your computer or server. IOBR utilizes many other R packages that are currently available from CRAN, Bioconductor and GitHub. Before installing IOBR, please install all dependencies by executing the following command in R console: The dependencies includs `tibble`, `survival`, `survminer`, `limma`, `limSolve`, `GSVA`, `e1071`, `preprocessCore`, `ggplot2` and `ggpubr`. ``` r # options("repos"= c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) # options(BioC_mirror="http://mirrors.tuna.tsinghua.edu.cn/bioconductor/") if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") depens<-c('tibble', 'survival', 'survminer', 'limma', "DESeq2","devtools", 'limSolve', 'GSVA', 'e1071', 'preprocessCore', "devtools", "tidyHeatmap", "caret", "glmnet", "ppcor", "timeROC", "pracma", "factoextra", "FactoMineR", "WGCNA", "patchwork", 'ggplot2', "biomaRt", 'ggpubr', 'ComplexHeatmap') for(i in 1:length(depens)){ depen<-depens[i] if (!requireNamespace(depen, quietly = TRUE)) BiocManager::install(depen,update = FALSE) } #> ``` The package is not yet on CRAN or Bioconductor. You can install it from Github: ``` r if (!requireNamespace("IOBR", quietly = TRUE)) devtools::install_github("IOBR/IOBR") #> Warning: 程辑包'tidyHeatmap'是用R版本4.2.3 来建造的 ``` Library R packages ``` r library(IOBR) ``` ### 3.Manual IOBR pipeline diagram below outlines the data processing flow of this package, and detailed guidance of how to use IOBR could be found in the [IOBR book](https://iobr.github.io/book/).
IOBR logo
## 3.Availabie methods to decode TME contexture ``` r tme_deconvolution_methods #> MCPcounter EPIC xCell CIBERSORT #> "mcpcounter" "epic" "xcell" "cibersort" #> CIBERSORT Absolute IPS ESTIMATE SVR #> "cibersort_abs" "ips" "estimate" "svr" #> lsei TIMER quanTIseq #> "lsei" "timer" "quantiseq" # Return available parameter options of TME deconvolution. ``` If you use this package in your work, please cite both our package and the method(s) you are using. #### Licenses of the deconvolution methods | method | license | citation | |-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | [CIBERSORT](https://cibersort.stanford.edu/) | free for non-commerical use only | Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., … Alizadeh, A. A. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature Methods, 12(5), 453–457. | | [ESTIMATE](https://bioinformatics.mdanderson.org/public-software/estimate/) | free ([GPL2.0](https://bioinformatics.mdanderson.org/estimate/)) | Vegesna R, Kim H, Torres-Garcia W, …, Verhaak R. (2013). Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications 4, 2612. | | [quanTIseq](http://icbi.at/software/quantiseq/doc/index.html) | free ([BSD](https://github.com/icbi-lab/immunedeconv/blob/master/LICENSE.md)) | Finotello, F., Mayer, C., Plattner, C., Laschober, G., Rieder, D., Hackl, H., …, Sopper, S. (2019). Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome medicine, 11(1), 34. | | [TIMER](http://cistrome.org/TIMER/) | free ([GPL 2.0](http://cistrome.org/TIMER/download.html)) | Li, B., Severson, E., Pignon, J.-C., Zhao, H., Li, T., Novak, J., … Liu, X. S. (2016). Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biology, 17(1), 174. | | [IPS](https://github.com/icbi-lab/Immunophenogram) | free ([BSD](https://github.com/icbi-lab/Immunophenogram/blob/master/LICENSE)) | P. Charoentong et al., Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Reports 18, 248-262 (2017). | | [MCPCounter](https://github.com/ebecht/MCPcounter) | free ([GPL 3.0](https://github.com/ebecht/MCPcounter/blob/master/Source/License)) | Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., … de Reyniès, A. (2016). Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biology, 17(1), 218. | | [xCell](http://xcell.ucsf.edu/) | free ([GPL 3.0](https://github.com/dviraran/xCell/blob/master/DESCRIPTION)) | Aran, D., Hu, Z., & Butte, A. J. (2017). xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biology, 18(1), 220. | | [EPIC](https://gfellerlab.shinyapps.io/EPIC_1-1/) | free for non-commercial use only ([Academic License](https://github.com/GfellerLab/EPIC/blob/master/LICENSE)) | Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E., & Gfeller, D. (2017). Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. ELife, 6, e26476. | ## 4.Availabie methods to estimate signatures ``` r signature_score_calculation_methods #> PCA ssGSEA z-score Integration #> "pca" "ssgsea" "zscore" "integration" # Return available parameter options of signature estimation. ``` #### Licenses of the signature-esitmation method | method | license | citation | |--------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | [GSVA](http://www.bioconductor.org/packages/release/bioc/html/GSVA.html) | free ([GPL (\>= 2)](https://github.com/rcastelo/GSVA)) | Hänzelmann S, Castelo R, Guinney J (2013). “GSVA: gene set variation analysis for microarray and RNA-Seq data.” BMC Bioinformatics, 14, 7. doi: 10.1186/1471-2105-14-7, | ## 5.Signature collection ``` r #References of collected signatures signature_collection_citation[!duplicated(signature_collection_citation$Journal),] #> # A tibble: 19 × 6 #> Signatures `Published year` Journal Title PMID DOI #> #> 1 CD_8_T_effector 2018 Nature TGFβ… 2944… 10.1… #> 2 TMEscoreA_CIR 2019 Cancer… Tumo… 3084… 10.1… #> 3 CD8_Rooney_et_al 2015 Cell Mole… 2559… 10.1… #> 4 T_cell_inflamed_GEP_Ayers_et_al 2017 The Jo… IFN-… 2865… 10.1… #> 5 MDSC_Wang_et_al 2016 Cancce… Targ… 2670… 10.1… #> 6 B_cells_Danaher_et_al 2017 Journa… Gene… 2823… 10.1… #> 7 Nature_metabolism_Hypoxia 2019 Nature… Char… 3198… 10.1… #> 8 Winter_hypoxia_signature 2007 Cancer… Rela… 1740… 10.1… #> 9 Hu_hypoxia_signature 2019 Molecu… The … 3044… 10.1… #> 10 MT_exosome 2019 Molecu… An E… 3147… 10.1… #> 11 SR_exosome 2017 Scient… Gene… 2838… 10.1… #> 12 MC_Review_Exosome1 2016 Molcul… Diag… 2718… 10.1… #> 13 CMLS_Review_Exosome 2018 Cellul… Curr… 2873… 10.1… #> 14 Positive_regulation_of_exosomal_s… 2020 Gene O… http… #> 15 Molecular_Cancer_m6A 2020 Molecu… m6A … 10.1… #> 16 Ferroptosis 2020 IOBR Cons… #> 17 T_cell_accumulation_Peng_et_al 2018 Nature… Sign… 3012… 10.1… #> 18 Antigen_Processing_and_Presentati… 2020 Nature… Pan-… 3208… 10.1… #> 19 CD8_T_cells_Bindea_et_al 2013 Immuni… Spat… 2413… 10.1… #signature groups sig_group[1:3] #> $tumor_signature #> [1] "CellCycle_Reg" #> [2] "Cell_cycle" #> [3] "DDR" #> [4] "Mismatch_Repair" #> [5] "Histones" #> [6] "Homologous_recombination" #> [7] "Nature_metabolism_Hypoxia" #> [8] "Molecular_Cancer_m6A" #> [9] "MT_exosome" #> [10] "Positive_regulation_of_exosomal_secretion" #> [11] "Ferroptosis" #> [12] "EV_Cell_2020" #> #> $EMT #> [1] "Pan_F_TBRs" "EMT1" "EMT2" "EMT3" "WNT_target" #> #> $io_biomarkers #> [1] "TMEscore_CIR" "TMEscoreA_CIR" #> [3] "TMEscoreB_CIR" "T_cell_inflamed_GEP_Ayers_et_al" #> [5] "CD_8_T_effector" "IPS_IPS" #> [7] "Immune_Checkpoint" "Exhausted_CD8_Danaher_et_al" #> [9] "Pan_F_TBRs" "Mismatch_Repair" #> [11] "APM" ``` ## References Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y,…, Liao W (2021) **IOBR**: Multi-Omics Immuno-Oncology Biological Research to Decode Tumor Microenvironment and Signatures. *Frontiers in Immunology*. 12:687975. [doi: 10.3389/fimmu.2021.687975](https://www.frontiersin.org/articles/10.3389/fimmu.2021.687975/full) ## Reporting bugs Please report bugs to the [Github issues page](https://github.com/IOBR/IOBR/issues) E-mail any questions to