# IOBR
**Repository Path**: joyeric_admin_admin/IOBR
## Basic Information
- **Project Name**: IOBR
- **Description**: 1. IOBR整合了10种已发表的大家比较认可的肿瘤微环境解析方法:CIBERSORT (fraction, absolute), TIMER, xCell, MCP-counter, ESTIMATE, EPIC, IPS, quanTIseq, lsei;
2. IOBR收集了255个已经发表的signatures,包括肿瘤微环境相关的,代谢相关的,m6A, 外泌体,铁凋亡和错配修复等通路
- **Primary Language**: Unknown
- **License**: GPL-3.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2023-05-22
- **Last Updated**: 2023-10-15
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# IOBR: Immuno-Oncology Biological Research
IOBR is an R package to perform comprehensive analysis of tumor
microenvironment and signatures for immuno-oncology.
### 1.Introduction
- 1. IOBR collects 255 published signature gene sets, involving tumor
microenvironment, tumor metabolism, m6A, exosomes, microsatellite
instability, and tertiary lymphoid structure. Running the function
`signature_collection_citation` to attain the source papers. The
function `signature_collection` returns the detail signature genes
of all given signatures.
- 2. IOBR integrates 8 published methodologies decoding tumor
microenvironment (TME) contexture: `CIBERSORT`, `TIMER`, `xCell`,
`MCPcounter`, `ESITMATE`, `EPIC`, `IPS`, `quanTIseq`;
- 3. IOBR adopts three computational methods to calculate the signature
score, comprising `PCA`,`z-score`, and `ssGSEA`;
- 4. IOBR integrates multiple approaches for variable transition,
visualization, batch survival analysis, feature selection, and
statistical analysis.
- 5. IOBR also integrates methods for batch visualization of subgroup
characteristics.
#### IOBR package workflow
IOBR logo
### 2.Installation
It is essential that you have R 3.6.3 or above already installed on your
computer or server. IOBR utilizes many other R packages that are
currently available from CRAN, Bioconductor and GitHub. Before
installing IOBR, please install all dependencies by executing the
following command in R console:
The dependencies includs `tibble`, `survival`, `survminer`, `limma`,
`limSolve`, `GSVA`, `e1071`, `preprocessCore`, `ggplot2` and `ggpubr`.
``` r
# options("repos"= c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
# options(BioC_mirror="http://mirrors.tuna.tsinghua.edu.cn/bioconductor/")
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
depens<-c('tibble', 'survival', 'survminer', 'limma', "DESeq2","devtools", 'limSolve', 'GSVA', 'e1071', 'preprocessCore',
"devtools", "tidyHeatmap", "caret", "glmnet", "ppcor", "timeROC", "pracma", "factoextra",
"FactoMineR", "WGCNA", "patchwork", 'ggplot2', "biomaRt", 'ggpubr', 'ComplexHeatmap')
for(i in 1:length(depens)){
depen<-depens[i]
if (!requireNamespace(depen, quietly = TRUE)) BiocManager::install(depen,update = FALSE)
}
#>
```
The package is not yet on CRAN or Bioconductor. You can install it from
Github:
``` r
if (!requireNamespace("IOBR", quietly = TRUE))
devtools::install_github("IOBR/IOBR")
#> Warning: 程辑包'tidyHeatmap'是用R版本4.2.3 来建造的
```
Library R packages
``` r
library(IOBR)
```
### 3.Manual
IOBR pipeline diagram below outlines the data processing flow of this
package, and detailed guidance of how to use IOBR could be found in the
[IOBR book](https://iobr.github.io/book/).
IOBR logo
## 3.Availabie methods to decode TME contexture
``` r
tme_deconvolution_methods
#> MCPcounter EPIC xCell CIBERSORT
#> "mcpcounter" "epic" "xcell" "cibersort"
#> CIBERSORT Absolute IPS ESTIMATE SVR
#> "cibersort_abs" "ips" "estimate" "svr"
#> lsei TIMER quanTIseq
#> "lsei" "timer" "quantiseq"
# Return available parameter options of TME deconvolution.
```
If you use this package in your work, please cite both our package and
the method(s) you are using.
#### Licenses of the deconvolution methods
| method | license | citation |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [CIBERSORT](https://cibersort.stanford.edu/) | free for non-commerical use only | Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., … Alizadeh, A. A. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature Methods, 12(5), 453–457. |
| [ESTIMATE](https://bioinformatics.mdanderson.org/public-software/estimate/) | free ([GPL2.0](https://bioinformatics.mdanderson.org/estimate/)) | Vegesna R, Kim H, Torres-Garcia W, …, Verhaak R. (2013). Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications 4, 2612. |
| [quanTIseq](http://icbi.at/software/quantiseq/doc/index.html) | free ([BSD](https://github.com/icbi-lab/immunedeconv/blob/master/LICENSE.md)) | Finotello, F., Mayer, C., Plattner, C., Laschober, G., Rieder, D., Hackl, H., …, Sopper, S. (2019). Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome medicine, 11(1), 34. |
| [TIMER](http://cistrome.org/TIMER/) | free ([GPL 2.0](http://cistrome.org/TIMER/download.html)) | Li, B., Severson, E., Pignon, J.-C., Zhao, H., Li, T., Novak, J., … Liu, X. S. (2016). Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biology, 17(1), 174. |
| [IPS](https://github.com/icbi-lab/Immunophenogram) | free ([BSD](https://github.com/icbi-lab/Immunophenogram/blob/master/LICENSE)) | P. Charoentong et al., Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Reports 18, 248-262 (2017). |
| [MCPCounter](https://github.com/ebecht/MCPcounter) | free ([GPL 3.0](https://github.com/ebecht/MCPcounter/blob/master/Source/License)) | Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., … de Reyniès, A. (2016). Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biology, 17(1), 218. |
| [xCell](http://xcell.ucsf.edu/) | free ([GPL 3.0](https://github.com/dviraran/xCell/blob/master/DESCRIPTION)) | Aran, D., Hu, Z., & Butte, A. J. (2017). xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biology, 18(1), 220. |
| [EPIC](https://gfellerlab.shinyapps.io/EPIC_1-1/) | free for non-commercial use only ([Academic License](https://github.com/GfellerLab/EPIC/blob/master/LICENSE)) | Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E., & Gfeller, D. (2017). Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. ELife, 6, e26476. |
## 4.Availabie methods to estimate signatures
``` r
signature_score_calculation_methods
#> PCA ssGSEA z-score Integration
#> "pca" "ssgsea" "zscore" "integration"
# Return available parameter options of signature estimation.
```
#### Licenses of the signature-esitmation method
| method | license | citation |
|--------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [GSVA](http://www.bioconductor.org/packages/release/bioc/html/GSVA.html) | free ([GPL (\>= 2)](https://github.com/rcastelo/GSVA)) | Hänzelmann S, Castelo R, Guinney J (2013). “GSVA: gene set variation analysis for microarray and RNA-Seq data.” BMC Bioinformatics, 14, 7. doi: 10.1186/1471-2105-14-7, |
## 5.Signature collection
``` r
#References of collected signatures
signature_collection_citation[!duplicated(signature_collection_citation$Journal),]
#> # A tibble: 19 × 6
#> Signatures `Published year` Journal Title PMID DOI
#>
#> 1 CD_8_T_effector 2018 Nature TGFβ… 2944… 10.1…
#> 2 TMEscoreA_CIR 2019 Cancer… Tumo… 3084… 10.1…
#> 3 CD8_Rooney_et_al 2015 Cell Mole… 2559… 10.1…
#> 4 T_cell_inflamed_GEP_Ayers_et_al 2017 The Jo… IFN-… 2865… 10.1…
#> 5 MDSC_Wang_et_al 2016 Cancce… Targ… 2670… 10.1…
#> 6 B_cells_Danaher_et_al 2017 Journa… Gene… 2823… 10.1…
#> 7 Nature_metabolism_Hypoxia 2019 Nature… Char… 3198… 10.1…
#> 8 Winter_hypoxia_signature 2007 Cancer… Rela… 1740… 10.1…
#> 9 Hu_hypoxia_signature 2019 Molecu… The … 3044… 10.1…
#> 10 MT_exosome 2019 Molecu… An E… 3147… 10.1…
#> 11 SR_exosome 2017 Scient… Gene… 2838… 10.1…
#> 12 MC_Review_Exosome1 2016 Molcul… Diag… 2718… 10.1…
#> 13 CMLS_Review_Exosome 2018 Cellul… Curr… 2873… 10.1…
#> 14 Positive_regulation_of_exosomal_s… 2020 Gene O… http…
#> 15 Molecular_Cancer_m6A 2020 Molecu… m6A … 10.1…
#> 16 Ferroptosis 2020 IOBR Cons…
#> 17 T_cell_accumulation_Peng_et_al 2018 Nature… Sign… 3012… 10.1…
#> 18 Antigen_Processing_and_Presentati… 2020 Nature… Pan-… 3208… 10.1…
#> 19 CD8_T_cells_Bindea_et_al 2013 Immuni… Spat… 2413… 10.1…
#signature groups
sig_group[1:3]
#> $tumor_signature
#> [1] "CellCycle_Reg"
#> [2] "Cell_cycle"
#> [3] "DDR"
#> [4] "Mismatch_Repair"
#> [5] "Histones"
#> [6] "Homologous_recombination"
#> [7] "Nature_metabolism_Hypoxia"
#> [8] "Molecular_Cancer_m6A"
#> [9] "MT_exosome"
#> [10] "Positive_regulation_of_exosomal_secretion"
#> [11] "Ferroptosis"
#> [12] "EV_Cell_2020"
#>
#> $EMT
#> [1] "Pan_F_TBRs" "EMT1" "EMT2" "EMT3" "WNT_target"
#>
#> $io_biomarkers
#> [1] "TMEscore_CIR" "TMEscoreA_CIR"
#> [3] "TMEscoreB_CIR" "T_cell_inflamed_GEP_Ayers_et_al"
#> [5] "CD_8_T_effector" "IPS_IPS"
#> [7] "Immune_Checkpoint" "Exhausted_CD8_Danaher_et_al"
#> [9] "Pan_F_TBRs" "Mismatch_Repair"
#> [11] "APM"
```
## References
Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y,…, Liao W (2021) **IOBR**:
Multi-Omics Immuno-Oncology Biological Research to Decode Tumor
Microenvironment and Signatures. *Frontiers in Immunology*. 12:687975.
[doi:
10.3389/fimmu.2021.687975](https://www.frontiersin.org/articles/10.3389/fimmu.2021.687975/full)
## Reporting bugs
Please report bugs to the [Github issues
page](https://github.com/IOBR/IOBR/issues)
E-mail any questions to