# PISCES **Repository Path**: joyeric_admin_admin/PISCES ## Basic Information - **Project Name**: PISCES - **Description**: PISCES: A pipeline for the Systematic, Protein Activity-based Analysis of Single Cell RNA Sequencing Data - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-08-28 - **Last Updated**: 2024-06-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README --- title: "PISCES Tutorial" authors: - Lukas Vlahos - Aleksandar Obradovic - Pasquale Laise - Andrea Califano --- **Authors:** Lukas Vlahos, Aleksandar Obradovic, Pasquale Laise, Andrea Califano **Contacts:** * Lukas Vlahos: lv2395@cumc.columbia.edu * Aleksandar Obradovic: azo2104@cumc.columbia.edu ### Overview The pipeline for Protein Activity Inference in Single Cells (PISCES) is a regulatory-network-based methdology for the analysis of single cell gene expression profiles. Currently, the PISCES manuscript is available on bioRxiv: https://doi.org/10.1101/2021.05.20.445002 NOTE: This version of the pipeline is a newer iteration, implementing new algorithms developed by the Califano lab. An updated manuscript and more robust set of vignettes for the newer iteration of the pipeline is forthcoming. ### Installation Here's how you can install the PISCES package: ``` # install cran packages install.packages("abind", "BiocManager", "circlize", "cluster", "devtools", "ggplot2", "ggpubr", "ggrepel", "grDevices", "Matrix", "RColorBrewer", "RSpectra", "Seurat", "uwot") # install bioconductor packages BiocManager::install("biomaRt") BiocManager::install("ComplexHeatmap") # install PISCES devtools::install_github("califano-lab/PISCES") ``` You can then learn about how to use PISCES with our vignettes: ``` library(PISCES) browseVignettes(package = "PISCES") ``` Some other features we're working on right now: * Vignette demonstating the functionality of MWKMeans for analyzing trajectories * RCPP ARACNe for easier network generation ======= ### References 1. Lachmann, A., et al., *ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information*. Bioinformatics, 2016. 32(14): p. 2233-5. 2. Califano, H.D.a.A., *iterClust: Iterative Clustering*. R package version 1.4.0. 2018: https://github.com/hd2326/iterClust. 3. Ding, H., et al., *Quantitative assessment of protein activity in orphan tissues and single cells using the metaVIPER algorithm*. Nat Commun, 2018. 9(1): p. 1471. 4. Rosseeuw, P.J., *Journal of Computational and Applied Mathematics* 20 (1987) 53-65 5. Izenman, A.J., *Modern Multivariate Statistical Techniques. Regression, Classification, and Manifold Learning*. Springer text in statistics, 2008 (Chapter 12) #### Acknowledgements Jeremy Dooley - for his advice and expertise in single cell sequencing experiments. Hongxu Ding - whose work in the Califano laid the groundwork for the development of this pipeline. Evan Paull - for help with software and tutorial development and testing.