# ggforestplot **Repository Path**: joyeric_admin_admin/ggforestplot ## Basic Information - **Project Name**: ggforestplot - **Description**: NightingaleHealth/ggforestplot - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-12-13 - **Last Updated**: 2022-12-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
Logo

ggforestplot

Visualizing Measures of Effect


`ggforestplot` is an R package for plotting measures of effect and their confidence intervals (e.g. linear associations or log and hazard ratios, in a forestplot layout, a.k.a. blobbogram). The main plotting function is `ggforestplot::forestplot()` which will create a single-column forestplot of effects, given an input data frame. The two vignettes [Using ggforestplot](https://nightingalehealth.github.io/ggforestplot/articles/ggforestplot.html) and [NMR data analysis tutorial](https://nightingalehealth.github.io/ggforestplot/articles/nmr-data-analysis-tutorial.html) provide an introduction to creating forestplot visualizations with custom groupings and performing basic exploratory analysis (using demo metabolic data of the [Nightingale Health NMR platform](https://nightingalehealth.com/technology)). ## Installation You can install `ggforestplot` from github as shown below (unless already installed, you need to first install `devtools`): ``` r # install.packages("devtools") devtools::install_github("NightingaleHealth/ggforestplot") ``` If you want display package vignettes with `utils::vignette()`, install `ggforestplot` with `devtools::install_github("NightingaleHealth/ggforestplot", build_vignettes = TRUE)`. However, installing with building the vignettes takes little bit longer. (Note: If dependencies are not installed automatically, try updating `devtools`.) ## Examples Below we briefly showcase the usage of `ggforestplot` with publicly available datasets, which are also included in the package (see [A. V. Ahola-Olli et al. (2019)](https://www.biorxiv.org/content/10.1101/513648v1)). ### Linear associations Plot a vertical forestplot for linear associations of blood biomarkers to insulin resistance (HOMA-IR), fasting glucose and Body Mass Index (BMI). ``` r # Load tidyverse and ggforestplot # install.packages("tidyverse") library(tidyverse) library(ggforestplot) # Get subset of example, linear associations, data frame df_linear <- ggforestplot::df_linear_associations %>% dplyr::arrange(name) %>% dplyr::filter(dplyr::row_number() <= 30) # Forestplot forestplot( df = df_linear, estimate = beta, logodds = FALSE, colour = trait, title = "Associations to metabolic traits", xlab = "1-SD increment in cardiometabolic trait per 1-SD increment in biomarker concentration" ) ``` ![](man/figures/README-unnamed-chunk-3-1.png) ### Odds ratios Plot a vertical forestplot for odds ratios of blood biomarkers with risk for future type 2 diabetes; visualize all 4 available cohorts and their meta-analysis. ``` r # Get subset of example, log odds ratios, data frame df_logodds <- df_logodds_associations %>% dplyr::arrange(name) %>% dplyr::left_join(ggforestplot::df_NG_biomarker_metadata, by = "name") %>% dplyr::filter(group == "Amino acids") %>% # Set the study variable to a factor to preserve order of appearance # Set class to factor to set order of display. dplyr::mutate( study = factor( study, levels = c("Meta-analysis", "NFBC-1997", "DILGOM", "FINRISK-1997", "YFS") ) ) # Forestplot forestplot( df = df_logodds, estimate = beta, logodds = TRUE, colour = study, shape = study, title = "Associations to type 2 diabetes", xlab = "Odds ratio for incident type 2 diabetes (95% CI) per 1−SD increment in metabolite concentration" ) + # You may also want to add a manual shape scale to mark meta-analysis with a # diamond shape ggplot2::scale_shape_manual( values = c(23L, 21L, 21L, 21L, 21L), labels = c("Meta-analysis", "NFBC-1997", "DILGOM", "FINRISK-1997", "YFS") ) ``` ![](man/figures/README-unnamed-chunk-4-1.png)