# irGSEA **Repository Path**: joyeric_admin_admin/irGSEA ## Basic Information - **Project Name**: irGSEA - **Description**: https://gitee.com/joyeric_admin_admin/irGSEA.git - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-05-12 - **Last Updated**: 2025-05-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # irGSEA Integrate all single cell rank-based gene set enrichment analysis and easy to visualize the results. For more details, please view [irGSEA](https://chuiqin.github.io/irGSEA/) And you can view [Chinese tutorial](https://www.jianshu.com/p/463dd6e2986f) \## Installation ``` r # install packages from CRAN cran.packages <- c("aplot", "BiocManager", "data.table", "devtools", "doParallel", "doRNG", "dplyr", "ggfun", "gghalves", "ggplot2", "ggplotify", "ggridges", "ggsci", "irlba", "magrittr", "Matrix", "msigdbr", "pagoda2", "pointr", "purrr", "RcppML", "readr", "reshape2", "reticulate", "rlang", "RMTstat", "RobustRankAggreg", "roxygen2", "Seurat", "SeuratObject", "stringr", "tibble", "tidyr", "tidyselect", "tidytree", "VAM") if (!requireNamespace(cran.packages, quietly = TRUE)) { install.packages(cran.packages, ask = F, update = F) } # install packages from Bioconductor bioconductor.packages <- c("AUCell", "BiocParallel", "ComplexHeatmap", "decoupleR", "fgsea", "ggtree", "GSEABase", "GSVA", "Nebulosa", "scde", "singscore", "SummarizedExperiment", "UCell", "viper") if (!requireNamespace(bioconductor.packages, quietly = TRUE)) { BiocManager::install(bioconductor.packages, ask = F, update = F) } # install packages from Github if (!requireNamespace("VISION", quietly = TRUE)) { devtools::install_github("YosefLab/VISION", force =T) } if (!requireNamespace("gficf", quietly = TRUE)) { devtools::install_github("gambalab/gficf", force =T) } if (!requireNamespace("SeuratDisk", quietly = TRUE)) { devtools::install_github("mojaveazure/seurat-disk", force =T) } if (!requireNamespace("irGSEA", quietly = TRUE)) { devtools::install_github("chuiqin/irGSEA", force =T) } ``` ## load example dataset load PBMC dataset by R package SeuratData ``` r # devtools::install_github('satijalab/seurat-data') library(SeuratData) # view all available datasets View(AvailableData()) # download 3k PBMCs from 10X Genomics InstallData("pbmc3k") # the details of pbmc3k.final ?pbmc3k.final ``` ``` r library(Seurat) library(SeuratData) # loading dataset data("pbmc3k.final") pbmc3k.final <- UpdateSeuratObject(pbmc3k.final) # plot DimPlot(pbmc3k.final, reduction = "umap", group.by = "seurat_annotations",label = T) + NoLegend() ``` ``` r # set cluster to idents Idents(pbmc3k.final) <- pbmc3k.final$seurat_annotations ``` ## Load library ``` r library(irGSEA) ``` ## Calculate enrichment scores calculate enrichment scores, return a Seurat object including these score matrix AUcell or ssGSEA will run for a long time if there are lots of genes or cells. Thus, It’s recommended to keep high quality genes or cells. Error (Valid ‘mctype’: ‘snow’ or ‘doMC’) occurs when ncore \> 1 : please ensure the version of AUCell \>= 1.14 or set ncore = 1. It can be ignore when warnning occurs as follow: 1. closing unused connection 3 (localhost) 2. Using ‘dgCMatrix’ objects as input is still in an experimental stage. 3. xxx genes with constant expression values throuhgout the samples. 4. Some gene sets have size one. Consider setting ‘min.sz’ \> 1. ``` r pbmc3k.final <- irGSEA.score(object = pbmc3k.final, assay = "RNA", slot = "data", seeds = 123, ncores = 1, min.cells = 3, min.feature = 0, custom = F, geneset = NULL, msigdb = T, species = "Homo sapiens", category = "H", subcategory = NULL, geneid = "symbol", method = c("AUCell", "UCell", "singscore", "ssgsea", "JASMINE", "viper"), aucell.MaxRank = NULL, ucell.MaxRank = NULL, kcdf = 'Gaussian') #> Validating object structure #> Updating object slots #> Ensuring keys are in the proper structure #> Ensuring feature names don't have underscores or pipes #> Object representation is consistent with the most current Seurat version #> Calculate AUCell scores #> Warning: Feature names cannot have underscores ('_'), replacing with dashes #> ('-') #> Warning: Feature names cannot have underscores ('_'), replacing with dashes #> ('-') #> Finish calculate AUCell scores #> Calculate UCell scores #> Warning: Feature names cannot have underscores ('_'), replacing with dashes #> ('-') #> Warning: Feature names cannot have underscores ('_'), replacing with dashes #> ('-') #> Finish calculate UCell scores #> Calculate singscore scores #> Warning: Feature names cannot have underscores ('_'), replacing with dashes #> ('-') #> Warning: Feature names cannot have underscores ('_'), replacing with dashes #> ('-') #> Finish calculate singscore scores #> Calculate ssgsea scores #> Warning in .local(expr, gset.idx.list, ...): Using 'dgCMatrix' objects as input #> is still in an experimental stage. #> Warning in .filterFeatures(expr, method): 1 genes with constant expression #> values throuhgout the samples. #> [1] "Calculating ranks..." #> [1] "Calculating absolute values from ranks..." #> Warning: Feature names cannot have underscores ('_'), replacing with dashes #> ('-') #> Warning: Feature names cannot have underscores ('_'), replacing with dashes #> ('-') #> Finish calculate ssgsea scores #> Calculate JASMINE scores #> Warning: Feature names cannot have underscores ('_'), replacing with dashes #> ('-') #> Warning: Feature names cannot have underscores ('_'), replacing with dashes #> ('-') #> Finish calculate jasmine scores #> Calculate viper scores #> Warning: Feature names cannot have underscores ('_'), replacing with dashes #> ('-') #> Warning: Feature names cannot have underscores ('_'), replacing with dashes #> ('-') #> Finish calculate viper scores Seurat::Assays(pbmc3k.final) #> [1] "RNA" "AUCell" "UCell" "singscore" "ssgsea" "JASMINE" #> [7] "viper" ``` ## Integrate differential gene set Wlicox test is perform to all enrichment score matrixes and gene sets with adjusted p value \< 0.05 are used to integrated through RRA. Among them, Gene sets with p value \< 0.05 are statistically significant and common differential in all gene sets enrichment analysis methods. All results are saved in a list. ``` r result.dge <- irGSEA.integrate(object = pbmc3k.final, group.by = "seurat_annotations", metadata = NULL, col.name = NULL, method = c("AUCell","UCell","singscore", "ssgsea", "JASMINE", "viper")) #> Calculate differential gene set : AUCell #> Calculate differential gene set : UCell #> Calculate differential gene set : singscore #> Calculate differential gene set : ssgsea #> Calculate differential gene set : JASMINE #> Calculate differential gene set : viper class(result.dge) #> [1] "list" ``` ## Visualization ### 1. Global show ### heatmap plot Show co-upregulated or co-downregulated gene sets per cluster in RRA ``` r irGSEA.heatmap.plot <- irGSEA.heatmap(object = result.dge, method = "RRA", top = 50, show.geneset = NULL) irGSEA.heatmap.plot ``` ### Bubble.plot Show co-upregulated or co-downregulated gene sets per cluster in RRA. If error (argument “caller_env” is missing, with no default) occurs : please uninstall ggtree and run “remotes::install_github(”YuLab-SMU/ggtree”)“. ``` r irGSEA.bubble.plot <- irGSEA.bubble(object = result.dge, method = "RRA", top = 50) irGSEA.bubble.plot ``` ### upset plot Show the intersections of significant gene sets among clusters in RRA Don’t worry if warning happens : the condition has length \> 1 and only the first element will be used. It’s ok. ``` r irGSEA.upset.plot <- irGSEA.upset(object = result.dge, method = "RRA") irGSEA.upset.plot ``` ### Stacked bar plot Show the intersections of significant gene sets among clusters in all methods ``` r irGSEA.barplot.plot <- irGSEA.barplot(object = result.dge, method = c("AUCell", "UCell", "singscore", "ssgsea", "JASMINE", "viper", "RRA")) irGSEA.barplot.plot ``` ### 2. local show Show the expression and distribution of special gene sets in special gene set enrichment analysis method ### density scatterplot Show the expression and distribution of “HALLMARK-INFLAMMATORY-RESPONSE” in Ucell on UMAP plot. ``` r scatterplot <- irGSEA.density.scatterplot(object = pbmc3k.final, method = "UCell", show.geneset = "HALLMARK-INFLAMMATORY-RESPONSE", reduction = "umap") scatterplot ``` ### half vlnplot Show the expression and distribution of “HALLMARK-INFLAMMATORY-RESPONSE” in Ucell among clusters. ``` r halfvlnplot <- irGSEA.halfvlnplot(object = pbmc3k.final, method = "UCell", show.geneset = "HALLMARK-INFLAMMATORY-RESPONSE") halfvlnplot ``` Show the expression and distribution of “HALLMARK-INFLAMMATORY-RESPONSE” between AUCell, UCell, singscore, ssgsea, JASMINE and viper among clusters. ``` r vlnplot <- irGSEA.vlnplot(object = pbmc3k.final, method = c("AUCell", "UCell", "singscore", "ssgsea", "JASMINE", "viper"), show.geneset = "HALLMARK-INFLAMMATORY-RESPONSE") vlnplot ``` ### ridge plot Show the expression and distribution of “HALLMARK-INFLAMMATORY-RESPONSE” in Ucell among clusters. ``` r ridgeplot <- irGSEA.ridgeplot(object = pbmc3k.final, method = "UCell", show.geneset = "HALLMARK-INFLAMMATORY-RESPONSE") ridgeplot #> Picking joint bandwidth of 0.00533 ``` ### density heatmap Show the expression and distribution of “HALLMARK-INFLAMMATORY-RESPONSE” in Ucell among clusters. ``` r densityheatmap <- irGSEA.densityheatmap(object = pbmc3k.final, method = "UCell", show.geneset = "HALLMARK-INFLAMMATORY-RESPONSE") densityheatmap ```