# yolov5_obb_static_Rebuild **Repository Path**: jsxyhelu2020/yolov5_obb_static_Rebuild ## Basic Information - **Project Name**: yolov5_obb_static_Rebuild - **Description**: yolov5_obb_static - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2022-11-05 - **Last Updated**: 2022-11-05 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Yolov5 for Oriented Object Detection ![图片](./docs/detection.png) ![train_batch0.jpg](./docs/train_batch6.jpg) ![results.png](./docs/results.png) The code for the implementation of “[Yolov5](https://github.com/ultralytics/yolov5) + [Circular Smooth Label](https://arxiv.org/abs/2003.05597v2)”. # Results and Models The results on **DOTA_subsize1024_gap200_rate1.0** test-dev set are shown in the table below. (**password: yolo**) |Model
(download link) |Size
(pixels) | TTA
(multi-scale/
rotate testing) | OBB mAPtest
0.5
DOTAv1.0 | OBB mAPtest
0.5
DOTAv1.5 | OBB mAPtest
0.5
DOTAv2.0 | Speed
CPU b1
(ms)|Speed
2080Ti b1
(ms) |Speed
2080Ti b16
(ms) |params
(M) |FLOPs
@640 (B) | ---- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |yolov5m [[baidu](https://pan.baidu.com/s/1UPNaMuQ_gNce9167FZx8-w)/[google](https://drive.google.com/file/d/1NMgxcN98cmBg9_nVK4axxqfiq4pYh-as/view?usp=sharing)] |1024 | × |**77.3** |**73.2** |**58.0** |**328.2** |**16.9** |**11.3** |**21.6** |**50.5** |yolov5s [[baidu](https://pan.baidu.com/s/1Lqw42xlSZxZn-2gNniBpmw?pwd=yolo)] |1024 | × |**76.8** |- |- |- |**15.6** | - |**7.5** |**17.5** |yolov5n [[baidu](https://pan.baidu.com/s/1Lqw42xlSZxZn-2gNniBpmw?pwd=yolo)] |1024 | × |**73.3** |- |- |- |**15.2** | - |**2.0** |**5.0**
Table Notes (click to expand / **点我看更多**) * All checkpoints are trained to 300 epochs with [COCO pre-trained checkpoints](https://github.com/ultralytics/yolov5/releases/tag/v6.0), default settings and hyperparameters. * **mAPtest dota** values are for single-model single-scale on [DOTA](https://captain-whu.github.io/DOTA/index.html)(1024,1024,200,1.0) dataset.
Reproduce Example: ```shell python val.py --data 'data/dotav15_poly.yaml' --img 1024 --conf 0.01 --iou 0.4 --task 'test' --batch 16 --save-json --name 'dotav15_test_split' python tools/TestJson2VocClassTxt.py --json_path 'runs/val/dotav15_test_split/best_obb_predictions.json' --save_path 'runs/val/dotav15_test_split/obb_predictions_Txt' python DOTA_devkit/ResultMerge_multi_process.py --scrpath 'runs/val/dotav15_test_split/obb_predictions_Txt' --dstpath 'runs/val/dotav15_test_split/obb_predictions_Txt_Merged' zip the poly format results files and submit it to https://captain-whu.github.io/DOTA/evaluation.html ``` * **Speed** averaged over DOTAv1.5 val_split_subsize1024_gap200 images using a 2080Ti gpu. NMS + pre-process times is included.
Reproduce by `python val.py --data 'data/dotav15_poly.yaml' --img 1024 --task speed --batch 1`
# [Updates](./docs/ChangeLog.md) - [2022/1/7] : **Faster and stronger**, some bugs fixed, yolov5 base version updated. # Installation Please refer to [install.md](./docs/install.md) for installation and dataset preparation. # Getting Started This repo is based on [yolov5](https://github.com/ultralytics/yolov5). And this repo has been rebuilt, Please see [GetStart.md](./docs/GetStart.md) for the Oriented Detection latest basic usage. # Acknowledgements I have used utility functions from other wonderful open-source projects. Espeicially thank the authors of: * [ultralytics/yolov5](https://github.com/ultralytics/yolov5). * [Thinklab-SJTU/CSL_RetinaNet_Tensorflow](https://github.com/Thinklab-SJTU/CSL_RetinaNet_Tensorflow). * [jbwang1997/OBBDetection](https://github.com/jbwang1997/OBBDetection) * [CAPTAIN-WHU/DOTA_devkit](https://github.com/CAPTAIN-WHU/DOTA_devkit) ## More detailed explanation 想要了解相关实现的细节和原理可以看我的知乎文章: * [自己改建YOLOv5旋转目标的踩坑记录](https://www.zhihu.com/column/c_1358464959123390464). ## 有问题反馈 在使用中有任何问题,建议先按照[install.md](./docs/install.md)检查环境依赖项,再按照[GetStart.md](./docs/GetStart.md)检查使用流程是否正确,善用搜索引擎和github中的issue搜索框,可以极大程度上节省你的时间。 若遇到的是新问题,可以用以下联系方式跟我交流,为了提高沟通效率,请尽可能地提供相关信息以便我复现该问题。 * 知乎(@[略略略](https://www.zhihu.com/people/lue-lue-lue-3-92-86)) * 代码问题提issues,其他问题请知乎上联系 ## 关于作者 ```javascript Name : "胡凯旋" describe myself:"咸鱼一枚"