# water-quality-predict **Repository Path**: kahsolt/water-quality-predict ## Basic Information - **Project Name**: water-quality-predict - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-20 - **Last Updated**: 2025-10-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # water-quality-predict 水质检测指标的时间序列预测平台后端 ---- 你妈的😠,说起来是个很简单的toy,但是差不多写了一整套批处理作业框架…… 现在变成一个平台性的作业流了:提交数据集并创建任务 -> 无脑训练若干个预测器 -> 用性能最好的预测器应对新的查询 ### WebApp > You can launch our flask webapp, train & infer through HTTP requests Run server: - start server `python server.py -H -P ` (default `port=5000`) - point your browser to `http://127.0.0.1:5000/` for API documentation - recognized envvars - `DEBUG_PLOT`: save intermediate plots during training for debug - `LOG_JOB`: log job setting & model details when loading a pretrained job - run tests - unit test: `python test_ut.py` - integral test: `python test_st.py` (require server running) Run client: - `python client.py -H -P ` ![client](img/client.png) ### Local > You can also run local command for training, debug inplace-infer results via the demo app ⚪ Data - prepare your `*.csv` files (suggested to put under `data` folder) - each file can contain several columns - the first columns is datetime in ISO 8601 format, e.g. `2022-09-27 18:00:00.000` - the rest columns are float data from your sensor devices - the last column is to predict on ⚪ Job & Train - write a job file, see guide => [doc/job.md](doc/job.md) - run a single job: `python run.py -D path\to\*.csv -J path\to\*.yaml --target all` - run folder of jobs: `python run.py -D data\test.csv -X job` - see also: `run.cmd` ⚪ Eval - run demo client app for debug: `python demo.py` ![demo](img/demo.png) ---- by Armit 2024/03/15