# MobileFaceNet_Tutorial_Pytorch
**Repository Path**: kai-sun/MobileFaceNet_Tutorial_Pytorch
## Basic Information
- **Project Name**: MobileFaceNet_Tutorial_Pytorch
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2022-01-29
- **Last Updated**: 2022-02-18
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# MobileFaceNet_Tutorial_Pytorch
* This repo illustrates how to implement MobileFaceNet and Arcface for face recognition task.
* Pretrained model is posted for tests over picture, video and cam
* Help document on how to implement MTCNN+MobileFaceNet is available
* Scripts on transforming MXNET data records in [Insightface](https://github.com/deepinsight/insightface/wiki/Dataset-Zoo) to images are provided
* Scripts on train and evaluation of MobileFaceNet model are provided
## MobileFaceNet Video Demo
## Test over Picture, Video and Cam
1. Test Picture
```
python MTCNN_MobileFaceNet.py -img {image_path}
```
2. Take Picture for Face Database
* over cam
```
python take_picture.py -n {name}
```
* over photo
```
python take_ID.py -i {image_path} -n {name}
```
3. Test Video
* over cam
```
python cam_demo.py
```
* over video file
```
python video_demo.py
```
4. Instruction
```
MobileFaceNet_Step_by_Step.ipynb
```
## Train
Download training and evaluation data from [Model Zoo](https://github.com/deepinsight/insightface/wiki/Dataset-Zoo). All training data has been cropped, aligned and resized as 112 x 112. Put images and annotation files into "data_set" folder. The structure should be arranged as follows:
```
data_set/
---> AgeDB-30
---> CASIA_Webface_Image
---> CFP-FP
---> faces_emore_images
---> LFW
```
1. The following script is provided to convert .bin and .rec file to images:
```
python data_set/load_images_from_bin.py
```
2. Generate the corresponding annotation files
```
python data_set/anno_generation.py
```
3. Train MobileFaceNet
```
python Train.py
```
4. Instruction
```
MobileFaceNet_Training_Step_by_Step.ipynb
```
The training results over faces_emore data (5822653 images / 85742 ids) are shown below:
|
|