# BoundaryNets **Repository Path**: kang_wu/boundary-nets ## Basic Information - **Project Name**: BoundaryNets - **Description**: This implementation is for the article titled "Cloud detection with BoundaryNets". - **Primary Language**: Python - **License**: GPL-3.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 7 - **Forks**: 3 - **Created**: 2021-08-27 - **Last Updated**: 2025-05-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Cloud detection with BoundaryNets This implementation is for the article titled "Cloud detection with BoundaryNets", also see in [Github]() --- ## Environemnt ### Our environment - CentOS 7.9 - Intel Xeon Gold 5218R CPU - 2 NVIDIA Geforce 2080Ti GPUs ### Requirements - Python 3.6 - Pytorch 0.4.1 - Gdal --- ## Train ### Trained model The trained model can be downloaded from: [Google Driver](https://drive.google.com/file/d/1sCHbDIcAHOt_IqdOTnNokECkrIUYVX9K/view?usp=drive_link). ### Training details 1. config the training details in the file: `boundarynets_train_sparcs.py` 2. train the nets by: ```shell python boundarynets_train_sparcs.py ``` --- ## Test 1. config the model_dir and saved_dir on the file: `boundarynets_test_sparcs.py` 2. inference the nets by: ```shell python boundarynets_test_sparcs.py ``` --- ## Todo - [X] Test Code release - [X] Trained model release - [X] Train Code release - [X] Crop Code release - [x] [Eval Code](https://gitee.com/kang_wu/in-extensive-nets/blob/master/utils/metrics.py) release --- ## BibTex ``` @article{WU2022218, title = {Cloud detection with boundary nets}, journal = {ISPRS Journal of Photogrammetry and Remote Sensing}, volume = {186}, pages = {218-231}, year = {2022}, issn = {0924-2716}, doi = {https://doi.org/10.1016/j.isprsjprs.2022.02.010}, url = {https://www.sciencedirect.com/science/article/pii/S0924271622000521}, author = {Kang Wu and Zunxiao Xu and Xinrong Lyu and Peng Ren} } ``` --- ## Contact kang_wu@foxmail.com