# ADMMDiff **Repository Path**: koalaaaaaaaaa/ADMMDiff ## Basic Information - **Project Name**: ADMMDiff - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-11-16 - **Last Updated**: 2025-11-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Decoupling Training-Free Guided Diffusion by ADMM ## Abstract In this paper, we consider the conditional generation problem by guiding off-the-shelf unconditional diffusion models with differentiable loss functions in a plug-and-play fashion. We propose a novel framework that distinctly decouples these two components and develop a new algorithm based on the Alternating Direction Method of Multipliers (ADMM) to adaptively balance these components. ![cover-img](./assets/teaser.png) ## Set environment ``` conda env create -f environment.yml conda activate admm ``` ## Run Please refer to the folders ./NonLinear, ./Linear and ./Motion.