# FRDiff **Repository Path**: koalaaaaaaaaa/FRDiff ## Basic Information - **Project Name**: FRDiff - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-12 - **Last Updated**: 2025-01-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # FRDiff : Feature Reuse for Universal Training-free Acceleration of Diffusion Models [[Arxiv]](https://arxiv.org/abs/2312.03517) [[Project]](https://jungwon-lee.github.io/Project_FRDiff) [[Colab]](https://colab.research.google.com/drive/1nG15sCcIS-XaZKDvGugBvg4eKF3qftoA#scrollTo=zvA_neljsaaU) ### [Junhyuk So*](https://github.com/junhyukso), [Jungwon Lee*](https://github.com/Jungwon-Lee) and Eunhyeok Park This repository is official code of [FRDiff : Feature Reuse for Universal Training-free Acceleration of Diffusion Models](https://arxiv.org/abs/2312.03517) ## Overview In our work, we introduce an advanced acceleration technique that leverages the ___temporal redundancy___ inherent in diffusion models. Reusing feature maps with high temporal similarity opens up a new opportunity to save computation resources without compromising output quality. To realize the practical benefits of this intuition, we conduct an extensive analysis and propose a novel method, ___FRDiff___. ___FRDiff___ is designed to harness the advantages of both reduced NFE and feature reuse, achieving a Pareto frontier that balances fidelity and latency trade-offs in various generative tasks.