# SHERT
**Repository Path**: kolonse_zhjsh/SHERT
## Basic Information
- **Project Name**: SHERT
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 0
- **Created**: 2024-11-28
- **Last Updated**: 2025-05-11
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
Semantic Human Mesh Reconstruction with Textures
Xiaoyu Zhan
·
Jianxin Yang
·
Yuanqi Li
·
Jie Guo
·
Yanwen Guo
·
Wenping Wang
This repository contains the official Pytorch implementation for Semantic Human Mesh Reconstruction with Textures.
## Overview
- [1 - Installation](#installation)
- [2 - Demo](#demo)
- [3 - Acknowledgments](#acknowledgments)
- [4 - Citation](#citation)
- [5 - Contact](#contact)
## 📍 Installation
### 1. Get Started
Start from creating a conda environment.
```bash
git clone https://github.com/ZhanxyR/SHERT.git
cd SHERT
conda create -n shert python=3.8
conda activate shert
```
### 2. Install Pytorch
Follow [Pytorch](https://pytorch.org/get-started/previous-versions/).
We recommend to use `Pytorch >= 2.0` (lowest tested on `1.13`).
### 3. Install Open3D
> [!IMPORTANT]
> Please install a specific version of Open3D manually to avoid any problem.
(We will fix the bugs to adapt to higher versions later.)
```bash
pip install open3d==0.10.0
```
### 4. Install Other Dependencies
```bash
pip install -r requirements.txt
```
### 5. Build Pytorch3D
Follow [Pytorch3D](https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md#building--installing-from-source). We recommend to build from source code.
The version we used is `v0.7.6`, while the lower versions should also be applicable.
> [!NOTE]
> If you have any trouble in building the package, you could just set the `refine_iter` to `1` in corresponding `config.yaml` to avoid using Pytorch3D.
(e.g. `./examples/demo_scan/config.yaml`)
### 6. Download Required Data and Checkpoints
Selective to dowload `data/smplx`, `data/face`, `examples/*`, and `save/ckpt` from [NJU-Box](https://box.nju.edu.cn/d/a7feb0bf42014f97ae50/) or [Google-Drive](https://drive.google.com/drive/folders/1UokzpgQNGe3q-vdvrWQpD3FreFNy7MmS?usp=sharing).
Dowload `SMPL-X v1.1 Models` (Male, Female, Neutral) from [SMPL-X](https://smpl-x.is.tue.mpg.de) and put them to `data/models`.
The completed structure should be like:
```
|-- SHERT
|-- data
|-- cameras
|-- masks
|-- smplx
|-- face
|-- models
|-- smplx
|-- SMPLX_*.npz
|-- examples
|-- demo_image_w_gt_smplx
|-- demo_image
|-- demo_scan
|-- save
|-- ckpt
|-- inpaint.pth # For mesh completion
|-- refine.pth # For mesh refinement
|-- texture_local # For texture inpainting
|-- texture_global # For texture repainting
```
## 🚀 Demo
- The whole processes include two steps: `reconstruction` and `texture inpainting`.
⚡ Run `quick_demo` to test `reconstruction` in given resources. The results will be saved to `./examples/$subject$/results`.
```bash
# Use ECON-pred mesh and fitted smplx.
python -m apps.quick_demo
# Use THuman scan and fitted smplx.
python -m apps.quick_demo -e scan
# Given only the image and predict all inputs with ECON.
python -m apps.quick_demo -e image
```
🖥️ For `texture inpainting`, we provide a client script and a server script that enables you to run diffusion model on remote server.
The client script will create a webui using [Gradio](https://www.gradio.app/), which can be accessed by `http://localhost:7860`.
> [!NOTE]
> If you run the client in a new environment, some corresponding dependencies should be reinstalled.
When you first use inpainting, it will download the pretrained diffusion checkpoints from [Huggingface](https://huggingface.co/).
```bash
# Run server
python -m apps.texture_rpc_server
# Run remote client
python -m apps.texture_client -i
# Run local client
python -m apps.texture_client -i localhost
```
## 🏵️ Acknowledgments
This work was supported by the National Natural Science Foundation of China (No. 62032011) and the Natural Science Foundation of Jiangsu Province (No. BK20211147).
There are also many powerful resources that greatly benefit our work:
- [ICON](https://github.com/YuliangXiu/ICON)
- [ECON](https://github.com/YuliangXiu/ECON)
- [SMPL-X](https://github.com/vchoutas/smplx)
- [ControlNet](https://github.com/lllyasviel/ControlNet)
- [Stable-Diffusion](https://github.com/Stability-AI/stablediffusion)
- [EMOCA](https://github.com/radekd91/emoca)
- [THuman2.0](https://github.com/ytrock/THuman2.0-Dataset)
- [PIFu](https://github.com/shunsukesaito/PIFu)
- [PIFuHD](https://github.com/facebookresearch/pifuhd)
- [Open-PIFuhd](https://github.com/lingtengqiu/Open-PIFuhd)
- [DecoMR](https://github.com/zengwang430521/DecoMR)
- [Densebody](https://github.com/Lotayou/densebody_pytorch)
## 🖋️ Citation
```bibtex
@inproceedings{zhan2024shert,
title = {Semantic Human Mesh Reconstruction with Textures},
author = {Zhan, Xiaoyu and Yang, Jianxin and Li, Yuanqi and Guo, Jie and Guo, Yanwen and Wang, Wenping},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2024},
}
```
## 📧 Contact
Zhan, Xiaoyu (zhanxy@smail.nju.edu.cn) and Yang, Jianxin (jianxin-yang@smail.nju.edu.cn)