1 Star 0 Fork 0

範輝 / YouCompleteMe

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
GPL-3.0

YouCompleteMe: a code-completion engine for Vim

Gitter room Build status Coverage status

Help, Advice, Support

Looking for help, advice or support? Having problems getting YCM to work?

First carefully read the installation instructions for your OS. We recommend you use the supplied install.py - the "full" installation guide is for rare, advanced use cases and most users should use install.py.

If the server isn't starting and you're getting a "YouCompleteMe unavailable" error, check the Troubleshooting guide.

Next check the User Guide section on the semantic completer that you are using. For C/C++/Objective-C/Objective-C++/CUDA, you must read this section.

Finally, check the FAQ.

If, after reading the installation and user guides, and checking the FAQ, you're still having trouble, check the contacts section below for how to get in touch.

Please do NOT go to #vim on Freenode for support. Please contact the YouCompleteMe maintainers directly using the contact details below.

Contents

Intro

YouCompleteMe is a fast, as-you-type, fuzzy-search code completion, comprehension and refactoring engine for Vim.

It has several completion engines built in and supports any protocol-compliant Language Server, so can work with practically any language. YouCompleteMe contains:

  • an identifier-based engine that works with every programming language,
  • a powerful clangd-based engine that provides native semantic code completion for C/C++/Objective-C/Objective-C++/CUDA (from now on referred to as "the C-family languages"),
  • a Jedi-based completion engine for Python 2 and 3,
  • an OmniSharp-Roslyn-based completion engine for C#,
  • a Gopls-based completion engine for Go,
  • a TSServer-based completion engine for JavaScript and TypeScript,
  • a rust-analyzer-based completion engine for Rust,
  • a jdt.ls-based completion engine for Java.
  • a generic Language Server Protocol implementation for any language
  • and an omnifunc-based completer that uses data from Vim's omnicomplete system to provide semantic completions for many other languages (Ruby, PHP etc.).

YouCompleteMe GIF completion demo

Here's an explanation of what happens in the last GIF demo above.

First, realize that no keyboard shortcuts had to be pressed to get the list of completion candidates at any point in the demo. The user just types and the suggestions pop up by themselves. If the user doesn't find the completion suggestions relevant and/or just wants to type, they can do so; the completion engine will not interfere.

When the user sees a useful completion string being offered, they press the TAB key to accept it. This inserts the completion string. Repeated presses of the TAB key cycle through the offered completions.

If the offered completions are not relevant enough, the user can continue typing to further filter out unwanted completions.

A critical thing to notice is that the completion filtering is NOT based on the input being a string prefix of the completion (but that works too). The input needs to be a subsequence match of a completion. This is a fancy way of saying that any input characters need to be present in a completion string in the order in which they appear in the input. So abc is a subsequence of xaybgc, but not of xbyxaxxc. After the filter, a complicated sorting system ranks the completion strings so that the most relevant ones rise to the top of the menu (so you usually need to press TAB just once).

All of the above works with any programming language because of the identifier-based completion engine. It collects all of the identifiers in the current file and other files you visit (and your tags files) and searches them when you type (identifiers are put into per-filetype groups).

The demo also shows the semantic engine in use. When the user presses ., -> or :: while typing in insert mode (for C++; different triggers are used for other languages), the semantic engine is triggered (it can also be triggered with a keyboard shortcut; see the rest of the docs).

The last thing that you can see in the demo is YCM's diagnostic display features (the little red X that shows up in the left gutter; inspired by Syntastic) if you are editing a C-family file. As the completer engine compiles your file and detects warnings or errors, they will be presented in various ways. You don't need to save your file or press any keyboard shortcut to trigger this, it "just happens" in the background.

And that's not all...

YCM might be the only vim completion engine with the correct Unicode support. Though we do assume UTF-8 everywhere.

YouCompleteMe GIF unicode demo

YCM also provides semantic IDE-like features in a number of languages, including:

For example, here's a demo of signature help:

Signature Help Early Demo

Below we can see YCM being able to do a few things:

  • Retrieve references across files
  • Go to declaration/definition
  • Expand auto in C++
  • Fix some common errors with FixIt
  • Not shown in the GIF is GoToImplementation and GoToType for servers that support it.

YouCompleteMe GIF subcommands demo

And here's some documentation being shown in a hover popup, automatically and manually:

hover demo

Features vary by file type, so make sure to check out the file type feature summary and the full list of completer subcommands to find out what's available for your favourite languages.

You'll also find that YCM has filepath completers (try typing ./ in a file) and a completer that integrates with UltiSnips.

Installation

Requirements

Supported Vim Versions

Our policy is to support the Vim version that's in the latest LTS of Ubuntu. That's currently Ubuntu 20.04 which contains vim-nox at v8.1.2269.

Vim must have a working Python 3.6 runtime, compiled with --enable-shared (or --enable-framework). You can check with :py3 import sys; print( sys.version ).

For Neovim users, our policy is to require the latest released version. Currently, Neovim 0.5.0 is required. Please note that some features are not available in Neovim, and Neovim is not officially supported.

Supported Compilers

In order to provide the best possible performance and stability, ycmd has updated its code to C++17. This requires a version bump of the minimum supported compilers. The new requirements are:

Compiler Current Min
GCC 8
Clang 7
MSVC 15.7 (VS 2017)

YCM requires CMake 3.13 or greater. If your CMake is too old, you may be able to simply pip install --user cmake to get a really new version.

Individual completer requirements

When enabling language support for a particular language, there may be runtime requirements, such as needing Java Development Kit for Java support. In general, YCM is not in control of the required versions for the downstream compilers, though we do our best to signal where we know them.

macOS

Quick start, installing all completers

  • Install YCM plugin via Vundle
  • Install CMake, MacVim and Python 3; Note that the pre-installed macOS system vim is not supported (due to it having broken Python integration).
$ brew install cmake python go nodejs
  • Install mono from Mono Project (NOTE: on Intel Macs you can also brew install mono. On arm Macs, you may require Rosetta)

  • For java support you must install a JDK, one way to do this is with Homebrew:

$ brew install java
$ sudo ln -sfn $(brew --prefix java)/libexec/openjdk.jdk /Library/Java/JavaVirtualMachines/openjdk.jdk
  • Pre-installed macOS system Vim does not support Python 3. So you need to install either a Vim that supports Python 3 OR MacVim with Homebrew:

    • Option 1: Installing a Vim that supports Python 3
    brew install vim
    brew install macvim
  • Compile YCM.

    • For Intel and arm64 Macs, the bundled libclang/clangd work:

      cd ~/.vim/bundle/YouCompleteMe
      python3 install.py --all
    • If you have troubles with finding system frameworks or C++ standard library, try using the homebrew llvm:

      brew install llvm
      cd ~/.vim/bundle/YouCompleteMe
      python3 install.py --system-libclang --all

      And edit your vimrc to add the following line to use the Homebrew llvm's clangd:

      " Use homebrew's clangd
      let g:ycm_clangd_binary_path = trim(system('brew --prefix llvm')).'/bin/clangd'
  • For using an arbitrary LSP server, check the relevant section

Explanation for the quick start

These instructions (using install.py) are the quickest way to install YouCompleteMe, however they may not work for everyone. If the following instructions don't work for you, check out the full installation guide.

A supported Vim version with Python 3 is required. MacVim is a good option, even if you only use the terminal. YCM won't work with the pre-installed Vim from Apple as its Python support is broken. If you don't already use a Vim that supports Python 3 or MacVim, install it with Homebrew. Install CMake as well:

brew install vim cmake     

OR

brew install macvim cmake

Install YouCompleteMe with Vundle.

Remember: YCM is a plugin with a compiled component. If you update YCM using Vundle and the ycm_core library APIs have changed (happens rarely), YCM will notify you to recompile it. You should then rerun the install process.

NOTE: If you want C-family completion, you MUST have the latest Xcode installed along with the latest Command Line Tools (they are installed automatically when you run clang for the first time, or manually by running xcode-select --install)

Compiling YCM with semantic support for C-family languages through clangd:

cd ~/.vim/bundle/YouCompleteMe
./install.py --clangd-completer

Compiling YCM without semantic support for C-family languages:

cd ~/.vim/bundle/YouCompleteMe
./install.py

The following additional language support options are available:

  • C# support: install by downloading the Mono macOS package and add --cs-completer when calling install.py.
  • Go support: install Go and add --go-completer when calling install.py.
  • JavaScript and TypeScript support: install Node.js and npm and add --ts-completer when calling install.py.
  • Rust support: add --rust-completer when calling install.py.
  • Java support: install JDK and add --java-completer when calling install.py.

To simply compile with everything enabled, there's a --all flag. So, to install with all language features, ensure xbuild, go, node and npm tools are installed and in your PATH, then simply run:

cd ~/.vim/bundle/YouCompleteMe
./install.py --all

That's it. You're done. Refer to the User Guide section on how to use YCM. Don't forget that if you want the C-family semantic completion engine to work, you will need to provide the compilation flags for your project to YCM. It's all in the User Guide.

YCM comes with sane defaults for its options, but you still may want to take a look at what's available for configuration. There are a few interesting options that are conservatively turned off by default that you may want to turn on.

Linux 64-bit

The following assume you're using Ubuntu 20.04.

Quick start, installing all completers

  • Install YCM plugin via Vundle
  • Install CMake, Vim and Python
apt install build-essential cmake vim-nox python3-dev
  • Install mono-complete, go, node, java and npm
apt install mono-complete golang nodejs default-jdk npm
  • Compile YCM
cd ~/.vim/bundle/YouCompleteMe
python3 install.py --all

Explanation for the quick start

These instructions (using install.py) are the quickest way to install YouCompleteMe, however they may not work for everyone. If the following instructions don't work for you, check out the full installation guide.

Make sure you have a supported version of Vim with Python 3 support, and a supported compiler. The latest LTS of Ubuntu is the minimum platform for simple installation. For earlier releases or other distributions, you may have to do some work to acquire the dependencies.

If your vim version is too old, you may need to compile Vim from source (don't worry, it's easy).

Install YouCompleteMe with Vundle.

Remember: YCM is a plugin with a compiled component. If you update YCM using Vundle and the ycm_core library APIs have changed (happens rarely), YCM will notify you to recompile it. You should then rerun the install process.

Install development tools, CMake, and Python headers:

  • Fedora-like distributions:
sudo dnf install cmake gcc-c++ make python3-devel
  • Ubuntu LTS:
sudo apt install build-essential cmake3 python3-dev

Compiling YCM with semantic support for C-family languages through clangd:

cd ~/.vim/bundle/YouCompleteMe
python3 install.py --clangd-completer

Compiling YCM without semantic support for C-family languages:

cd ~/.vim/bundle/YouCompleteMe
python3 install.py

The following additional language support options are available:

  • C# support: install Mono and add --cs-completer when calling install.py.
  • Go support: install Go and add --go-completer when calling install.py.
  • JavaScript and TypeScript support: install Node.js and npm and add --ts-completer when calling install.py.
  • Rust support: add --rust-completer when calling install.py.
  • Java support: install JDK and add --java-completer when calling install.py.

To simply compile with everything enabled, there's a --all flag. So, to install with all language features, ensure xbuild, go, node and npm tools are installed and in your PATH, then simply run:

cd ~/.vim/bundle/YouCompleteMe
python3 install.py --all

That's it. You're done. Refer to the User Guide section on how to use YCM. Don't forget that if you want the C-family semantic completion engine to work, you will need to provide the compilation flags for your project to YCM. It's all in the User Guide.

YCM comes with sane defaults for its options, but you still may want to take a look at what's available for configuration. There are a few interesting options that are conservatively turned off by default that you may want to turn on.

Windows

Quick start, installing all completers

cd YouCompleteMe
python3 install.py --all

Explanation for the quick start

These instructions (using install.py) are the quickest way to install YouCompleteMe, however they may not work for everyone. If the following instructions don't work for you, check out the full installation guide.

Important: we assume that you are using the cmd.exe command prompt and that you know how to add an executable to the PATH environment variable.

Make sure you have a supported Vim version with Python 3 support. You can check the version and which Python is supported by typing :version inside Vim. Look at the features included: +python3/dyn for Python 3. Take note of the Vim architecture, i.e. 32 or 64-bit. It will be important when choosing the Python installer. We recommend using a 64-bit client. Daily updated installers of 32-bit and 64-bit Vim with Python 3 support are available.

Add the following line to your vimrc if not already present.:

set encoding=utf-8

This option is required by YCM. Note that it does not prevent you from editing a file in another encoding than UTF-8. You can do that by specifying the ++enc argument to the :e command.

Install YouCompleteMe with Vundle.

Remember: YCM is a plugin with a compiled component. If you update YCM using Vundle and the ycm_core library APIs have changed (happens rarely), YCM will notify you to recompile it. You should then rerun the install process.

Download and install the following software:

  • Python 3. Be sure to pick the version corresponding to your Vim architecture. It is Windows x86 for a 32-bit Vim and Windows x86-64 for a 64-bit Vim. We recommend installing Python 3. Additionally, the version of Python you install must match up exactly with the version of Python that Vim is looking for. Type :version and look at the bottom of the page at the list of compiler flags. Look for flags that look similar to -DDYNAMIC_PYTHON3_DLL=\"python36.dll\". This indicates that Vim is looking for Python 3.6. You'll need one or the other installed, matching the version number exactly.
  • CMake. Add CMake executable to the PATH environment variable.
  • Build Tools for Visual Studio 2019. During setup, select C++ build tools in Workloads.

Compiling YCM with semantic support for C-family languages through clangd:

cd %USERPROFILE%/vimfiles/bundle/YouCompleteMe
python install.py --clangd-completer

Compiling YCM without semantic support for C-family languages:

cd %USERPROFILE%/vimfiles/bundle/YouCompleteMe
python install.py

The following additional language support options are available:

  • C# support: add --cs-completer when calling install.py. Be sure that the build utility msbuild is in your PATH.
  • Go support: install Go and add --go-completer when calling install.py.
  • JavaScript and TypeScript support: install Node.js and npm and add --ts-completer when calling install.py.
  • Rust support: add --rust-completer when calling install.py.
  • Java support: install JDK and add --java-completer when calling install.py.

To simply compile with everything enabled, there's a --all flag. So, to install with all language features, ensure msbuild, go, node and npm tools are installed and in your PATH, then simply run:

cd %USERPROFILE%/vimfiles/bundle/YouCompleteMe
python install.py --all

You can specify the Microsoft Visual C++ (MSVC) version using the --msvc option. YCM officially supports MSVC 15 (2017), MSVC 16 (Visual Studio 2019) and MSVC 17 (Visual Studio 17 2022).

That's it. You're done. Refer to the User Guide section on how to use YCM. Don't forget that if you want the C-family semantic completion engine to work, you will need to provide the compilation flags for your project to YCM. It's all in the User Guide.

YCM comes with sane defaults for its options, but you still may want to take a look at what's available for configuration. There are a few interesting options that are conservatively turned off by default that you may want to turn on.

FreeBSD/OpenBSD

Quick start, installing all completers

  • Install YCM plugin via Vundle
  • Install CMake
pkg install cmake
  • Install xbuild, go, node and npm
  • Compile YCM
cd ~/.vim/bundle/YouCompleteMe
python3 install.py --all

Explanation for the quick start

These instructions (using install.py) are the quickest way to install YouCompleteMe, however they may not work for everyone. If the following instructions don't work for you, check out the full installation guide.

NOTE: OpenBSD / FreeBSD are not officially supported platforms by YCM.

Make sure you have a supported Vim version with Python 3 support, and a supported compiler and CMake, perhaps:

pkg install cmake

Install YouCompleteMe with Vundle.

Remember: YCM is a plugin with a compiled component. If you update YCM using Vundle and the ycm_core library APIs have changed (happens rarely), YCM will notify you to recompile it. You should then rerun the install process.

Compiling YCM with semantic support for C-family languages through clangd:

cd ~/.vim/bundle/YouCompleteMe
./install.py --clangd-completer

Compiling YCM without semantic support for C-family languages:

cd ~/.vim/bundle/YouCompleteMe
./install.py

If the python executable is not present, or the default python is not the one that should be compiled against, specify the python interpreter explicitly:

python3 install.py --clangd-completer

The following additional language support options are available:

  • C# support: install Mono and add --cs-completer when calling ./install.py.
  • Go support: install Go and add --go-completer when calling ./install.py.
  • JavaScript and TypeScript support: install Node.js and npm and add --ts-completer when calling install.py.
  • Rust support: add --rust-completer when calling ./install.py.
  • Java support: install JDK and add --java-completer when calling ./install.py.

To simply compile with everything enabled, there's a --all flag. So, to install with all language features, ensure xbuild, go, node and npm tools are installed and in your PATH, then simply run:

cd ~/.vim/bundle/YouCompleteMe
./install.py --all

That's it. You're done. Refer to the User Guide section on how to use YCM. Don't forget that if you want the C-family semantic completion engine to work, you will need to provide the compilation flags for your project to YCM. It's all in the User Guide.

YCM comes with sane defaults for its options, but you still may want to take a look at what's available for configuration. There are a few interesting options that are conservatively turned off by default that you may want to turn on.

Full Installation Guide

The full installation guide has been moved to the wiki.

Quick Feature Summary

General (all languages)

  • Super-fast identifier completer including tags files and syntax elements
  • Intelligent suggestion ranking and filtering
  • File and path suggestions
  • Suggestions from Vim's omnifunc
  • UltiSnips snippet suggestions

C-family languages (C, C++, Objective C, Objective C++, CUDA)

  • Semantic auto-completion with automatic fixes
  • Signature help
  • Real-time diagnostic display
  • Go to include/declaration/definition (GoTo, etc.)
  • Find Symbol (GoToSymbol), with interactive search
  • Document outline (GoToDocumentOutline), with interactive search
  • View documentation comments for identifiers (GetDoc)
  • Type information for identifiers (GetType)
  • Automatically fix certain errors (FixIt)
  • Reference finding (GoToReferences)
  • Renaming symbols (RefactorRename <new name>)
  • Code formatting (Format)

C♯

  • Semantic auto-completion
  • Signature help
  • Real-time diagnostic display
  • Go to declaration/definition (GoTo, etc.)
  • Go to implementation (GoToImplementation)
  • Find Symbol (GoToSymbol), with interactive search
  • View documentation comments for identifiers (GetDoc)
  • Type information for identifiers (GetType)
  • Automatically fix certain errors (FixIt)
  • Management of OmniSharp-Roslyn server instance
  • Renaming symbols (RefactorRename <new name>)
  • Code formatting (Format)

Python

  • Semantic auto-completion
  • Signature help
  • Go to definition (GoTo)
  • Find Symbol (GoToSymbol), with interactive search
  • Reference finding (GoToReferences)
  • View documentation comments for identifiers (GetDoc)
  • Type information for identifiers (GetType)
  • Renaming symbols (RefactorRename <new name>)

Go

  • Semantic auto-completion
  • Signature help
  • Real-time diagnostic display
  • Go to declaration/definition (GoTo, etc.)
  • Go to type definition (GoToType)
  • Go to implementation (GoToImplementation)
  • Document outline (GoToDocumentOutline), with interactive search
  • Automatically fix certain errors (FixIt)
  • View documentation comments for identifiers (GetDoc)
  • Type information for identifiers (GetType)
  • Code formatting (Format)
  • Management of gopls server instance

JavaScript and TypeScript

  • Semantic auto-completion with automatic import insertion
  • Signature help
  • Real-time diagnostic display
  • Go to definition (GoTo, GoToDefinition, and GoToDeclaration are identical)
  • Go to type definition (GoToType)
  • Go to implementation (GoToImplementation)
  • Find Symbol (GoToSymbol), with interactive search
  • Reference finding (GoToReferences)
  • View documentation comments for identifiers (GetDoc)
  • Type information for identifiers (GetType)
  • Automatically fix certain errors (FixIt)
  • Renaming symbols (RefactorRename <new name>)
  • Code formatting (Format)
  • Organize imports (OrganizeImports)
  • Management of TSServer server instance

Rust

  • Semantic auto-completion
  • Real-time diagnostic display
  • Go to declaration/definition (GoTo, etc.)
  • Go to implementation (GoToImplementation)
  • Reference finding (GoToReferences)
  • Document outline (GoToDocumentOutline), with interactive search
  • View documentation comments for identifiers (GetDoc)
  • Automatically fix certain errors (FixIt)
  • Type information for identifiers (GetType)
  • Renaming symbols (RefactorRename <new name>)
  • Code formatting (Format)
  • Management of rust-analyzer server instance

Java

  • Semantic auto-completion with automatic import insertion
  • Signature help
  • Real-time diagnostic display
  • Go to definition (GoTo, GoToDefinition, and GoToDeclaration are identical)
  • Go to type definition (GoToType)
  • Go to implementation (GoToImplementation)
  • Find Symbol (GoToSymbol), with interactive search
  • Reference finding (GoToReferences)
  • Document outline (GoToDocumentOutline), with interactive search
  • View documentation comments for identifiers (GetDoc)
  • Type information for identifiers (GetType)
  • Automatically fix certain errors including code generation (FixIt)
  • Renaming symbols (RefactorRename <new name>)
  • Code formatting (Format)
  • Organize imports (OrganizeImports)
  • Detection of java projects
  • Execute custom server command (ExecuteCommand <args>)
  • Management of jdt.ls server instance

User Guide

General Usage

If the offered completions are too broad, keep typing characters; YCM will continue refining the offered completions based on your input.

Filtering is "smart-case" and "smart-diacritic" sensitive; if you are typing only lowercase letters, then it's case-insensitive. If your input contains uppercase letters, then the uppercase letters in your query must match uppercase letters in the completion strings (the lowercase letters still match both). On top of that, a letter with no diacritic marks will match that letter with or without marks:

matches foo fôo fOo fÔo
foo ✔️ ✔️ ✔️ ✔️
fôo ✔️ ✔️
fOo ✔️ ✔️
fÔo ✔️

Use the TAB key to accept a completion and continue pressing TAB to cycle through the completions. Use Shift-TAB to cycle backwards. Note that if you're using console Vim (that is, not gvim or MacVim) then it's likely that the Shift-TAB binding will not work because the console will not pass it to Vim. You can remap the keys; see the Options section below.

Knowing a little bit about how YCM works internally will prevent confusion. YCM has several completion engines: an identifier-based completer that collects all of the identifiers in the current file and other files you visit (and your tags files) and searches them when you type (identifiers are put into per-filetype groups).

There are also several semantic engines in YCM. There are libclang-based and clangd-based completers that provide semantic completion for C-family languages. There's a Jedi-based completer for semantic completion for Python. There's also an omnifunc-based completer that uses data from Vim's omnicomplete system to provide semantic completions when no native completer exists for that language in YCM.

There are also other completion engines, like the UltiSnips completer and the filepath completer.

YCM automatically detects which completion engine would be the best in any situation. On occasion, it queries several of them at once, merges the outputs and presents the results to you.

Client-Server Architecture

YCM has a client-server architecture; the Vim part of YCM is only a thin client that talks to the ycmd HTTP+JSON server that has the vast majority of YCM logic and functionality. The server is started and stopped automatically as you start and stop Vim.

Completion String Ranking

The subsequence filter removes any completions that do not match the input, but then the sorting system kicks in. It's actually very complicated and uses lots of factors, but suffice it to say that "word boundary" (WB) subsequence character matches are "worth" more than non-WB matches. In effect, this means given an input of "gua", the completion "getUserAccount" would be ranked higher in the list than the "Fooguxa" completion (both of which are subsequence matches). A word-boundary character are all capital characters, characters preceded by an underscore and the first letter character in the completion string.

Signature Help

Valid signatures are displayed in a second popup menu and the current signature is highlighted along with the current argument.

Signature help is triggered in insert mode automatically when g:ycm_auto_trigger is enabled and is not supported when it is not enabled.

The signatures popup is hidden when there are no matching signatures or when you leave insert mode. There is no key binding to clear the popup.

For more details on this feature and a few demos, check out the PR that proposed it.

General Semantic Completion

You can use Ctrl+Space to trigger the completion suggestions anywhere, even without a string prefix. This is useful to see which top-level functions are available for use.

C-family Semantic Completion

NOTE: YCM originally used the libclang based engine for C-family, but users should migrate to clangd, as it provides more features and better performance. Users who rely on override_filename in their .ycm_extra_conf.py will need to stay on the old libclang engine. Instructions on how to stay on the old engine are available on the wiki.

Some of the features of clangd:

  • Project wide indexing: Clangd has both dynamic and static index support. The dynamic index stores up-to-date symbols coming from any files you are currently editing, whereas static index contains project-wide symbol information. This symbol information is used for code completion and code navigation. Whereas libclang is limited to the current translation unit(TU).
  • Code navigation: Clangd provides all the GoTo requests libclang provides and it improves those using the above mentioned index information to contain project-wide information rather than just the current TU.
  • Rename: Clangd can perform semantic rename operations on the current file, whereas libclang doesn't support such functionality.
  • Code Completion: Clangd can perform code completions at a lower latency than libclang; also, it has information about all the symbols in your project so it can suggest items outside your current TU and also provides proper #include insertions for those items.
  • Signature help: Clangd provides signature help so that you can see the names and types of arguments when calling functions.
  • Format Code: Clangd provides code formatting either for the selected lines or the whole file, whereas libclang doesn't have such functionality.
  • Performance: Clangd has faster re-parse and code completion times compared to libclang.

Installation

On supported architectures, the install.py script will download a suitable clangd (--clangd-completer) or libclang (--clang-completer) for you. Supported architectures are:

  • Linux glibc >= 2.17 (Intel, armv7-a, aarch64) - built on ubuntu 18.04
  • MacOS >=10.15 (Intel, arm64)
    • For Intel, compatibility per clang.llvm.org downloads
    • For arm64, macOS 10.15+
  • Windows (Intel) - compatibility per clang.llvm.org downloads

clangd:

Typically, clangd is installed by the YCM installer (either with --all or with --clangd-completer). This downloads a pre-built clangd binary for your architecture. If your OS or architecture is not supported or too old, you can install a compatible clangd and use g:ycm_clangd_binary_path to point to it.

libclang:

libclang can be enabled also with --all or --clang-completer. As with clangd, YCM will try and download a version of libclang that is suitable for your environment, but again if your environment can't be supported, you can build or acquire libclang for yourself and specify it when building, as:

$ EXTRA_CMAKE_ARGS='-DPATH_TO_LLVM_ROOT=/path/to/your/llvm' ./install.py --clang-compelter --system-libclang

Please note that if using custom clangd or libclang it must match the version that YCM requires. Currently YCM requires clang 13.0.0.

Compile flags

In order to perform semantic analysis such as code completion, GoTo and diagnostics, YouCompleteMe uses clangd, which makes use of clang compiler, sometimes also referred to as LLVM. Like any compiler, clang also requires a set of compile flags in order to parse your code. Simply put: If clang can't parse your code, YouCompleteMe can't provide semantic analysis.

There are 2 methods which can be used to provide compile flags to clang:

Option 1: Use a compilation database

The easiest way to get YCM to compile your code is to use a compilation database. A compilation database is usually generated by your build system (e.g. CMake) and contains the compiler invocation for each compilation unit in your project.

For information on how to generate a compilation database, see the clang documentation. In short:

  • If using CMake, add -DCMAKE_EXPORT_COMPILE_COMMANDS=ON when configuring (or add set( CMAKE_EXPORT_COMPILE_COMMANDS ON ) to CMakeLists.txt) and copy or symlink the generated database to the root of your project.
  • If using Ninja, check out the compdb tool (-t compdb) in its docs.
  • If using GNU make, check out compiledb or Bear.
  • For other build systems, check out .ycm_extra_conf.py below.

If no .ycm_extra_conf.py is found, YouCompleteMe automatically tries to load a compilation database if there is one.

YCM looks for a file named compile_commands.json in the directory of the opened file or in any directory above it in the hierarchy (recursively); when the file is found before a local .ycm_extra_conf.py, YouCompleteMe stops searching the directories and lets clangd take over and handle the flags.

Option 2: Provide the flags manually

If you don't have a compilation database, or aren't able to generate one, you have to tell YouCompleteMe how to compile your code some other way.

Every C-family project is different. It is not possible for YCM to guess what compiler flags to supply for your project. Fortunately, YCM provides a mechanism for you to generate the flags for a particular file with arbitrary complexity. This is achieved by requiring you to provide a Python module which implements a trivial function which, given the file name as argument, returns a list of compiler flags to use to compile that file.

YCM looks for a .ycm_extra_conf.py file in the directory of the opened file or in any directory above it in the hierarchy (recursively); when the file is found, it is loaded (only once!) as a Python module. YCM calls a Settings method in that module which should provide it with the information necessary to compile the current file. You can also provide a path to a global configuration file with the g:ycm_global_ycm_extra_conf option, which will be used as a fallback. To prevent the execution of malicious code from a file you didn't write YCM will ask you once per .ycm_extra_conf.py if it is safe to load. This can be disabled and you can white-/blacklist files. See the g:ycm_confirm_extra_conf and g:ycm_extra_conf_globlist options respectively.

This system was designed this way so that the user can perform any arbitrary sequence of operations to produce a list of compilation flags YCM should hand to Clang.

NOTE: It is highly recommended to include -x <language> flag to libclang. This is so that the correct language is detected, particularly for header files. Common values are -x c for C, -x c++ for C++, -x objc for Objective-C, and -x cuda for CUDA.

To give you an impression, if your C++ project is trivial, and your usual compilation command is: g++ -Wall -Wextra -Werror -o FILE.o FILE.cc, then the following .ycm_extra_conf.py is enough to get semantic analysis from YouCompleteMe:

def Settings( **kwargs ):
  return {
    'flags': [ '-x', 'c++', '-Wall', '-Wextra', '-Werror' ],
  }

As you can see from the trivial example, YCM calls the Settings method which returns a dictionary with a single element 'flags'. This element is a list of compiler flags to pass to libclang for the current file. The absolute path of that file is accessible under the filename key of the kwargs dictionary. That's it! This is actually enough for most projects, but for complex projects it is not uncommon to integrate directly with an existing build system using the full power of the Python language.

For a more elaborate example, see ycmd's own .ycm_extra_conf.py. You should be able to use it as a starting point. Don't just copy/paste that file somewhere and expect things to magically work; your project needs different flags. Hint: just replace the strings in the flags variable with compilation flags necessary for your project. That should be enough for 99% of projects.

You could also consider using YCM-Generator to generate the ycm_extra_conf.py file.

Errors during compilation

If Clang encounters errors when compiling the header files that your file includes, then it's probably going to take a long time to get completions. When the completion menu finally appears, it's going to have a large number of unrelated completion strings (type/function names that are not actually members). This is because Clang fails to build a precompiled preamble for your file if there are any errors in the included headers and that preamble is key to getting fast completions.

Call the :YcmDiags command to see if any errors or warnings were detected in your file.

Java Semantic Completion

Java quick Start

  1. Ensure that you have enabled the Java completer. See the installation guide for details.

  2. Create a project file (gradle or maven) file in the root directory of your Java project, by following the instructions below.

  3. (Optional) Configure the LSP server. The jdt.ls configuration options can be found in their codebase.

  4. If you previously used Eclim or Syntastic for Java, disable them for Java.

  5. Edit a Java file from your project.

Java Project Files

In order to provide semantic analysis, the Java completion engine requires knowledge of your project structure. In particular it needs to know the class path to use, when compiling your code. Fortunately jdt.ls supports eclipse project files, maven projects and gradle projects.

NOTE: Our recommendation is to use either maven or gradle projects.

Diagnostic display - Syntastic

The native support for Java includes YCM's native realtime diagnostics display. This can conflict with other diagnostics plugins like Syntastic, so when enabling Java support, please manually disable Syntastic Java diagnostics.

Add the following to your vimrc:

let g:syntastic_java_checkers = []

Diagnostic display - Eclim

The native support for Java includes YCM's native realtime diagnostics display. This can conflict with other diagnostics plugins like Eclim, so when enabling Java support, please manually disable Eclim Java diagnostics.

Add the following to your vimrc:

let g:EclimFileTypeValidate = 0

NOTE: We recommend disabling Eclim entirely when editing Java with YCM's native Java support. This can be done temporarily with :EclimDisable.

Eclipse Projects

Eclipse style projects require two files: .project and .classpath.

If your project already has these files due to previously being set up within eclipse, then no setup is required. jdt.ls should load the project just fine (it's basically eclipse after all).

However, if not, it is possible (easy in fact) to craft them manually, though it is not recommended. You're better off using gradle or maven (see below).

A simple eclipse style project example can be found in the ycmd test directory. Normally all that is required is to copy these files to the root of your project and to edit the .classpath to add additional libraries, such as:

  <classpathentry kind="lib" path="/path/to/external/jar" />
  <classpathentry kind="lib" path="/path/to/external/java/source" />

It may also be necessary to change the directory in which your source files are located (paths are relative to the .project file itself):

  <classpathentry kind="src" output="target/classes" path="path/to/src/" />

NOTE: The eclipse project and classpath files are not a public interface and it is highly recommended to use Maven or Gradle project definitions if you don't already use eclipse to manage your projects.

Maven Projects

Maven needs a file named pom.xml in the root of the project. Once again a simple pom.xml can be found in ycmd source.

The format of pom.xml files is way beyond the scope of this document, but we do recommend using the various tools that can generate them for you, if you're not familiar with them already.

Gradle Projects

Gradle projects require a build.gradle. Again, there is a trivial example in ycmd's tests.

The format of build.gradle files is way beyond the scope of this document, but we do recommend using the various tools that can generate them for you, if you're not familiar with them already.

Some users have experienced issues with their jdt.ls when using the Groovy language for their build.gradle. As such, try using Kotlin instead.

Troubleshooting

If you're not getting completions or diagnostics, check the server health:

  • The Java completion engine takes a while to start up and parse your project. You should be able to see its progress in the command line, and :YcmDebugInfo. Ensure that the following lines are present:
--   jdt.ls Java Language Server running
--   jdt.ls Java Language Server Startup Status: Ready
  • If the above lines don't appear after a few minutes, check the jdt.ls and ycmd log files using :YcmToggleLogs . The jdt.ls log file is called .log (for some reason).

If you get a message about "classpath is incomplete", then make sure you have correctly configured the project files.

If you get messages about unresolved imports, then make sure you have correctly configured the project files, in particular check that the classpath is set correctly.

C# Semantic Completion

YCM relies on OmniSharp-Roslyn to provide completion and code navigation. OmniSharp-Roslyn needs a solution file for a C# project and there are two ways of letting YCM know about your solution files.

Automatically discovered solution files

YCM will scan all parent directories of the file currently being edited and look for file with .sln extension.

Manually specified solution files

If YCM loads .ycm_extra_conf.py which contains CSharpSolutionFile function, YCM will try to use that to determine the solution file. This is useful when one wants to override the default behaviour and specify a solution file that is not in any of the parent directories of the currently edited file. Example:

def CSharpSolutionFile( filepath ):
  # `filepath` is the path of the file user is editing
  return '/path/to/solution/file' # Can be relative to the `.ycm_extra_conf.py`

If the path returned by CSharpSolutionFile is not an actual file, YCM will fall back to the other way of finding the file.

Python Semantic Completion

YCM relies on the Jedi engine to provide completion and code navigation. By default, it will pick the version of Python running the ycmd server and use its sys.path. While this is fine for simple projects, this needs to be configurable when working with virtual environments or in a project with third-party packages. The next sections explain how to do that.

Working with virtual environments

A common practice when working on a Python project is to install its dependencies in a virtual environment and develop the project inside that environment. To support this, YCM needs to know the interpreter path of the virtual environment. You can specify it by creating a .ycm_extra_conf.py file at the root of your project with the following contents:

def Settings( **kwargs ):
  return {
    'interpreter_path': '/path/to/virtual/environment/python'
  }

Here, /path/to/virtual/environment/python is the path to the Python used by the virtual environment you are working in. Typically, the executable can be found in the Scripts folder of the virtual environment directory on Windows and in the bin folder on other platforms.

If you don't like having to create a .ycm_extra_conf.py file at the root of your project and would prefer to specify the interpreter path with a Vim option, read the Configuring through Vim options section.

Working with third-party packages

Another common practice is to put the dependencies directly into the project and add their paths to sys.path at runtime in order to import them. YCM needs to be told about this path manipulation to support those dependencies. This can be done by creating a .ycm_extra_conf.py file at the root of the project. This file must define a Settings( **kwargs ) function returning a dictionary with the list of paths to prepend to sys.path under the sys_path key. For instance, the following .ycm_extra_conf.py adds the paths /path/to/some/third_party/package and /path/to/another/third_party/package at the start of sys.path:

def Settings( **kwargs ):
  return {
    'sys_path': [
      '/path/to/some/third_party/package',
      '/path/to/another/third_party/package'
    ]
  }

If you would rather prepend paths to sys.path with a Vim option, read the Configuring through Vim options section.

If you need further control on how to add paths to sys.path, you should define the PythonSysPath( **kwargs ) function in the .ycm_extra_conf.py file. Its keyword arguments are sys_path which contains the default sys.path, and interpreter_path which is the path to the Python interpreter. Here's a trivial example that insert the /path/to/third_party/package path at the second position of sys.path:

def PythonSysPath( **kwargs ):
  sys_path = kwargs[ 'sys_path' ]
  sys_path.insert( 1, '/path/to/third_party/package' )
  return sys_path

A more advanced example can be found in YCM's own .ycm_extra_conf.py.

Configuring through Vim options

You may find inconvenient to have to create a .ycm_extra_conf.py file at the root of each one of your projects in order to set the path to the Python interpreter and/or add paths to sys.path and would prefer to be able to configure those through Vim options. Don't worry, this is possible by using the g:ycm_extra_conf_vim_data option and creating a global extra configuration file. Let's take an example. Suppose that you want to set the interpreter path with the g:ycm_python_interpreter_path option and prepend paths to sys.path with the g:ycm_python_sys_path option. Suppose also that you want to name the global extra configuration file global_extra_conf.py and that you want to put it in your HOME folder. You should then add the following lines to your vimrc:

let g:ycm_python_interpreter_path = ''
let g:ycm_python_sys_path = []
let g:ycm_extra_conf_vim_data = [
  \  'g:ycm_python_interpreter_path',
  \  'g:ycm_python_sys_path'
  \]
let g:ycm_global_ycm_extra_conf = '~/global_extra_conf.py'

Then, create the ~/global_extra_conf.py file with the following contents:

def Settings( **kwargs ):
  client_data = kwargs[ 'client_data' ]
  return {
    'interpreter_path': client_data[ 'g:ycm_python_interpreter_path' ],
    'sys_path': client_data[ 'g:ycm_python_sys_path' ]
  }

That's it. You are done. Note that you don't need to restart the server when setting one of the options. YCM will automatically pick the new values.

Rust Semantic Completion

YCM uses rust-analyzer for Rust semantic completion.

NOTE: Previously, YCM used rls for rust completion. This is no longer supported, as the Rust community has decided on rust-analyzer as the future of Rust tooling.

Completions and GoTo commands within the current crate and its dependencies should work out of the box with no additional configuration (provided that you built YCM with the --rust-completer flag; see the Installation section for details). The install script takes care of installing the Rust source code, so no configuration is necessary.

rust-analyzer supports a myriad of options. These are configured using LSP configuration, but sadly don't appear to be documented at the time of writing. However, there is some source code which might help.

Go Semantic Completion

Completions and GoTo commands should work out of the box (provided that you built YCM with the --go-completer flag; see the Installation section for details). The server only works for projects with the "canonical" layout.

gopls also has a handful of undocumented options for which the source code is the only reference.

JavaScript and TypeScript Semantic Completion

NOTE: YCM originally used the Tern engine for JavaScript but due to Tern not being maintained anymore by its main author and the TSServer engine offering more features, YCM is moving to TSServer. This won't affect you if you were already using Tern but you are encouraged to do the switch by deleting the third_party/ycmd/third_party/tern_runtime/node_modules directory in YCM folder. If you are a new user but still want to use Tern, you should pass the --js-completer option to the install.py script during installation. Further instructions on how to setup YCM with Tern are available on the wiki.

All JavaScript and TypeScript features are provided by the TSServer engine, which is included in the TypeScript SDK. To enable these features, install Node.js and npm and call the install.py script with the --ts-completer flag.

TSServer relies on the jsconfig.json file for JavaScript and the tsconfig.json file for TypeScript to analyze your project. Ensure the file exists at the root of your project.

To get diagnostics in JavaScript, set the checkJs option to true in your jsconfig.json file:

{
    "compilerOptions": {
        "checkJs": true
    }
}

Semantic Completion for Other Languages

C-family, C#, Go, Java, Python, Rust, and JavaScript/TypeScript languages are supported natively by YouCompleteMe using the Clang, OmniSharp-Roslyn, Gopls, jdt.ls, Jedi, rust-analyzer, and TSServer engines, respectively. Check the installation section for instructions to enable these features if desired.

Plugging an arbitrary LSP server

Similar to other LSP clients, YCM can use an arbitrary LSP server with the help of g:ycm_language_server option. An example of a value of this option would be:

let g:ycm_language_server = 
  \ [ 
  \   {
  \     'name': 'yaml',
  \     'cmdline': [ '/path/to/yaml/server/yaml-language-server', '--stdio' ],
  \     'filetypes': [ 'yaml' ]
  \   },
  \   {
  \     'name': 'rust',
  \     'cmdline': [ 'ra_lsp_server' ],
  \     'filetypes': [ 'rust' ],
  \     'project_root_files': [ 'Cargo.toml' ]
  \   },
  \   {
  \     'name': 'godot',
  \     'filetypes': [ 'gdscript' ],
  \     'port': 6008,
  \     'project_root_files': [ 'project.godot' ]
  \    }
  \ ]

Each dictionary contains the following keys:

  • name (string, mandatory): When configuring a LSP server the value of the name key will be used as the kwargs[ 'language' ]. Can be anything you like.
  • filetypes (list of string, mandatory): List of Vim filetypes this server should be used for.
  • project_root_files (list of string, optional): List of filenames to search for when trying to determine the project root.
  • cmdline (list of string, optional): If supplied, the server is started with this command line (each list element is a command line word). Typically, the server should be started with STDIO communication. If not supplied, port must be supplied.
  • port (number, optional): If supplied, ycmd will connect to the server at localhost:<port> using TCP (remote servers are not supported).
  • capabilities (dict, optional): If supplied, this is a dictionary that is merged with the LSP client capabilities reported to the language server. This can be used to enable or disable certain features, such as the support for configuration sections (workspace/configuration).

See the LSP Examples project for more examples of configuring the likes of PHP, Ruby, Kotlin, and D.

LSP Configuration

Many LSP servers allow some level of user configuration. YCM enables this with the help of .ycm_extra_conf.py files. Here's an example of jdt.ls user examples of configuring the likes of PHP, Ruby, Kotlin, D, and many, many more.

def Settings( **kwargs ):
  if kwargs[ 'language' ] == 'java':
    return {
      'ls': {
        'java.format.onType.enabled': True
      }
    }

The ls key tells YCM that the dictionary should be passed to the LSP server. For each of the LSP server's configuration you should look up the respective server's documentation.

Some servers request settings from arbitrary 'sections' of configuration. There is no concept of configuration sections in vim, so you can specify an additional config_sections dictionary which maps section to a dictionary of config required by the server. For example:

def Settings( **kwargs ):
  if kwargs[ 'language' ] == 'java':
    return {
      'ls': {
        'java.format.onType.enabled': True
      },
      'config_sections': {
        'some section': {
          'some option': 'some value'
        }
    }

The sections and options/values are complete server-specific and rarely well documented.

Using omnifunc for semantic completion

YCM will use your omnifunc (see :h omnifunc in Vim) as a source for semantic completions if it does not have a native semantic completion engine for your file's filetype. Vim comes with rudimentary omnifuncs for various languages like Ruby, PHP, etc. It depends on the language.

You can get a stellar omnifunc for Ruby with Eclim. Just make sure you have the latest Eclim installed and configured (this means Eclim >= 2.2.* and Eclipse >= 4.2.*).

After installing Eclim remember to create a new Eclipse project within your application by typing :ProjectCreate <path-to-your-project> -n ruby inside vim and don't forget to have let g:EclimCompletionMethod = 'omnifunc' in your vimrc. This will make YCM and Eclim play nice; YCM will use Eclim's omnifuncs as the data source for semantic completions and provide the auto-triggering and subsequence-based matching (and other YCM features) on top of it.

Writing New Semantic Completers

You have two options here: writing an omnifunc for Vim's omnicomplete system that YCM will then use through its omni-completer, or a custom completer for YCM using the Completer API.

Here are the differences between the two approaches:

  • You have to use VimScript to write the omnifunc, but get to use Python to write for the Completer API; this by itself should make you want to use the API.
  • The Completer API is a much more powerful way to integrate with YCM and it provides a wider set of features. For instance, you can make your Completer query your semantic back-end in an asynchronous fashion, thus not blocking Vim's GUI thread while your completion system is processing stuff. This is impossible with VimScript. All of YCM's completers use the Completer API.
  • Performance with the Completer API is better since Python executes faster than VimScript.

If you want to use the omnifunc system, see the relevant Vim docs with :h complete-functions. For the Completer API, see the API docs.

If you want to upstream your completer into YCM's source, you should use the Completer API.

Diagnostic Display

YCM will display diagnostic notifications for the C-family, C#, Go, Java, JavaScript, Rust and TypeScript languages. Since YCM continuously recompiles your file as you type, you'll get notified of errors and warnings in your file as fast as possible.

Here are the various pieces of the diagnostic UI:

  • Icons show up in the Vim gutter on lines that have a diagnostic.
  • Regions of text related to diagnostics are highlighted (by default, a red wavy underline in gvim and a red background in vim).
  • Moving the cursor to a line with a diagnostic echoes the diagnostic text.
  • Vim's location list is automatically populated with diagnostic data (off by default, see options).

The new diagnostics (if any) will be displayed the next time you press any key on the keyboard. So if you stop typing and just wait for the new diagnostics to come in, that will not work. You need to press some key for the GUI to update.

Having to press a key to get the updates is unfortunate, but cannot be changed due to the way Vim internals operate; there is no way that a background task can update Vim's GUI after it has finished running. You have to press a key. This will make YCM check for any pending diagnostics updates.

You can force a full, blocking compilation cycle with the :YcmForceCompileAndDiagnostics command (you may want to map that command to a key; try putting nnoremap <F5> :YcmForceCompileAndDiagnostics<CR> in your vimrc). Calling this command will force YCM to immediately recompile your file and display any new diagnostics it encounters. Do note that recompilation with this command may take a while and during this time the Vim GUI will be blocked.

YCM will display a short diagnostic message when you move your cursor to the line with the error. You can get a detailed diagnostic message with the <leader>d key mapping (can be changed in the options) YCM provides when your cursor is on the line with the diagnostic.

You can also see the full diagnostic message for all the diagnostics in the current file in Vim's locationlist, which can be opened with the :lopen and :lclose commands (make sure you have set let g:ycm_always_populate_location_list = 1 in your vimrc). A good way to toggle the display of the locationlist with a single key mapping is provided by another (very small) Vim plugin called ListToggle (which also makes it possible to change the height of the locationlist window), also written by yours truly.

Diagnostic Highlighting Groups

You can change the styling for the highlighting groups YCM uses. For the signs in the Vim gutter, the relevant groups are:

  • YcmErrorSign, which falls back to group SyntasticErrorSign and then error if they exist
  • YcmWarningSign, which falls back to group SyntasticWarningSign and then todo if they exist

You can also style the line that has the warning/error with these groups:

  • YcmErrorLine, which falls back to group SyntasticErrorLine if it exists
  • YcmWarningLine, which falls back to group SyntasticWarningLine if it exists

Note that the line highlighting groups only work when the g:ycm_enable_diagnostic_signs option is set. If you want highlighted lines but no signs in the Vim gutter, set the signcolumn option to no in your vimrc:

set signcolumn=no

The syntax groups used to highlight regions of text with errors/warnings:

  • YcmErrorSection, which falls back to group SyntasticError if it exists and then SpellBad
  • YcmWarningSection, which falls back to group SyntasticWarning if it exists and then SpellCap

Here's how you'd change the style for a group:

highlight YcmErrorLine guibg=#3f0000

Symbol Search

This feature requires Vim and is not supported in Neovim

YCM provides a way to search for and jump to a symbol in the current project or document when using supported languages.

You can search for symbols in the current workspace when the GoToSymbol request is supported and the current document when GoToDocumentOutline is supported.

Here's a quick demo:

asciicast

As you can see, you can type and YCM filters down the list as you type. The current set of matches are displayed in a popup window in the centre of the screen and you can select an entry with the keyboard, to jump to that position. Any matches are then added to the quickfix list.

To enable:

  • nmap <something> <Plug>(YCMFindSymbolInWorkspace)
  • nmap <something> <Plug>(YCMFindSymbolInDocument)

e.g.

  • nmap <leader>yfw <Plug>(YCMFindSymbolInWorkspace)
  • nmap <leader>yfd <Plug>(YCMFindSymbolInDocument)

When searching, YCM opens a prompt buffer at the top of the screen for the input, and puts you in insert mode. This means that you can hit <Esc> to go into normal mode and use any other input commands that are supported in prompt buffers. As you type characters, the search is updated.

While the popup is open, the following keys are intercepted:

  • <C-j>, <Down>, <C-n>, <Tab> - select the next item
  • <C-k>, <Up>, <C-p>, <S-Tab> - select the previous item
  • <PageUp>, <kPageUp> - jump up one screenful of items
  • <PageDown>, <kPageDown> - jump down one screenful of items
  • <Home>, <kHome> - jump to first item
  • <End>, <kEnd> - jump to last item
  • <CR> - jump to the selected item
  • <C-c> cancel/dismiss the popup

The search is also cancelled if you leave the prompt buffer window at any time, so you can use window commands <C-w>... for example.

Closing the popup

NOTE: Pressing <Esc> does not close the popup - you must use Ctrl-c for that, or use a window command (e.g. <Ctrl-w>j) or the mouse to leave the prompt buffer window.

Commands

The :YcmRestartServer command

If the ycmd completion server suddenly stops for some reason, you can restart it with this command.

The :YcmForceCompileAndDiagnostics command

Calling this command will force YCM to immediately recompile your file and display any new diagnostics it encounters. Do note that recompilation with this command may take a while and during this time the Vim GUI will be blocked.

You may want to map this command to a key; try putting nnoremap <F5> :YcmForceCompileAndDiagnostics<CR> in your vimrc.

The :YcmDiags command

Calling this command will fill Vim's locationlist with errors or warnings if any were detected in your file and then open it. If a given error or warning can be fixed by a call to :YcmCompleter FixIt, then (FixIt available) is appended to the error or warning text. See the FixIt completer subcommand for more information.

NOTE: The absence of (FixIt available) does not strictly imply a fix-it is not available as not all completers are able to provide this indication. For example, the c-sharp completer provides many fix-its but does not add this additional indication.

The g:ycm_open_loclist_on_ycm_diags option can be used to prevent the location list from opening, but still have it filled with new diagnostic data. See the Options section for details.

The :YcmShowDetailedDiagnostic command

This command shows the full diagnostic text when the user's cursor is on the line with the diagnostic.

The :YcmDebugInfo command

This will print out various debug information for the current file. Useful to see what compile commands will be used for the file if you're using the semantic completion engine.

The :YcmToggleLogs command

This command presents the list of logfiles created by YCM, the ycmd server, and the semantic engine server for the current filetype, if any. One of these logfiles can be opened in the editor (or closed if already open) by entering the corresponding number or by clicking on it with the mouse. Additionally, this command can take the logfile names as arguments. Use the <TAB> key (or any other key defined by the wildchar option) to complete the arguments or to cycle through them (depending on the value of the wildmode option). Each logfile given as an argument is directly opened (or closed if already open) in the editor. Only for debugging purposes.

The :YcmCompleter command

This command gives access to a number of additional IDE-like features in YCM, for things like semantic GoTo, type information, FixIt and refactoring.

This command accepts a range that can either be specified through a selection in one of Vim's visual modes (see :h visual-use) or on the command line. For instance, :2,5YcmCompleter will apply the command from line 2 to line 5. This is useful for the Format subcommand.

Call YcmCompleter without further arguments for a list of the commands you can call for the current completer.

See the file type feature summary for an overview of the features available for each file type. See the YcmCompleter subcommands section for more information on the available subcommands and their usage.

YcmCompleter Subcommands

NOTE: See the docs for the YcmCompleter command before tackling this section.

The invoked subcommand is automatically routed to the currently active semantic completer, so :YcmCompleter GoToDefinition will invoke the GoToDefinition subcommand on the Python semantic completer if the currently active file is a Python one and on the Clang completer if the currently active file is a C-family language one.

You may also want to map the subcommands to something less verbose; for instance, nnoremap <leader>jd :YcmCompleter GoTo<CR> maps the <leader>jd sequence to the longer subcommand invocation.

GoTo Commands

These commands are useful for jumping around and exploring code. When moving the cursor, the subcommands add entries to Vim's jumplist so you can use CTRL-O to jump back to where you were before invoking the command (and CTRL-I to jump forward; see :h jumplist for details). If there is more than one destination, the quickfix list (see :h quickfix) is populated with the available locations and opened to full width at the bottom of the screen. You can change this behavior by using the YcmQuickFixOpened autocommand.

The GoToInclude subcommand

Looks up the current line for a header and jumps to it.

Supported in filetypes: c, cpp, objc, objcpp, cuda

The GoToDeclaration subcommand

Looks up the symbol under the cursor and jumps to its declaration.

Supported in filetypes: c, cpp, objc, objcpp, cuda, cs, go, java, javascript, python, rust, typescript

The GoToDefinition subcommand

Looks up the symbol under the cursor and jumps to its definition.

NOTE: For C-family languages this only works in certain situations, namely when the definition of the symbol is in the current translation unit. A translation unit consists of the file you are editing and all the files you are including with #include directives (directly or indirectly) in that file.

Supported in filetypes: c, cpp, objc, objcpp, cuda, cs, go, java, javascript, python, rust, typescript

The GoTo subcommand

This command tries to perform the "most sensible" GoTo operation it can. Currently, this means that it tries to look up the symbol under the cursor and jumps to its definition if possible; if the definition is not accessible from the current translation unit, jumps to the symbol's declaration. For C-family languages, it first tries to look up the current line for a header and jump to it. For C#, implementations are also considered and preferred.

Supported in filetypes: c, cpp, objc, objcpp, cuda, cs, go, java, javascript, python, rust, typescript

The GoToImprecise subcommand

WARNING: This command trades correctness for speed!

Same as the GoTo command except that it doesn't recompile the file with libclang before looking up nodes in the AST. This can be very useful when you're editing files that take long to compile but you know that you haven't made any changes since the last parse that would lead to incorrect jumps. When you're just browsing around your codebase, this command can spare you quite a bit of latency.

Supported in filetypes: c, cpp, objc, objcpp, cuda

The GoToSymbol <symbol query> subcommand

Finds the definition of all symbols matching a specified string. Note that this does not use any sort of smart/fuzzy matching. However, an interactive symbol search is also available.

Supported in filetypes: c, cpp, objc, objcpp, cuda, cs, java, javascript, python, typescript

The GoToReferences subcommand

This command attempts to find all of the references within the project to the identifier under the cursor and populates the quickfix list with those locations.

Supported in filetypes: c, cpp, objc, objcpp, cuda, java, javascript, python, typescript, rust

The GoToImplementation subcommand

Looks up the symbol under the cursor and jumps to its implementation (i.e. non-interface). If there are multiple implementations, instead provides a list of implementations to choose from.

Supported in filetypes: cs, go, java, rust, typescript, javascript

The GoToImplementationElseDeclaration subcommand

Looks up the symbol under the cursor and jumps to its implementation if one, else jump to its declaration. If there are multiple implementations, instead provides a list of implementations to choose from.

Supported in filetypes: cs

The GoToType subcommand

Looks up the symbol under the cursor and jumps to the definition of its type e.g. if the symbol is an object, go to the definition of its class.

Supported in filetypes: go, java, javascript, typescript

The GoToDocumentOutline subcommand

Provides a list of symbols in current document, in the quickfix list. See also interactive symbol search.

Supported in filetypes: c, cpp, objc, objcpp, cuda, go, java, rust

The GoToCallers and GoToCallees subcommands

Populate the quickfix list with the callers, or callees respectively, of the function associated with the current cursor position. The semantics of this differ depending on the filetype and language server.

Only supported for LSP servers which provide the callHierarchyProvider capability.

Semantic Information Commands

These commands are useful for finding static information about the code, such as the types of variables, viewing declarations and documentation strings.

The GetType subcommand

Echos the type of the variable or method under the cursor, and where it differs, the derived type.

For example:

    std::string s;

Invoking this command on s returns std::string => std::basic_string<char>

NOTE: Causes re-parsing of the current translation unit.

Supported in filetypes: c, cpp, objc, objcpp, cuda, java, javascript, go, python, typescript, rust

The GetTypeImprecise subcommand

WARNING: This command trades correctness for speed!

Same as the GetType command except that it doesn't recompile the file with libclang before looking up nodes in the AST. This can be very useful when you're editing files that take long to compile but you know that you haven't made any changes since the last parse that would lead to incorrect type. When you're just browsing around your codebase, this command can spare you quite a bit of latency.

Supported in filetypes: c, cpp, objc, objcpp, cuda

The GetParent subcommand

Echos the semantic parent of the point under the cursor.

The semantic parent is the item that semantically contains the given position.

For example:

class C {
    void f();
};

void C::f() {

}

In the out-of-line definition of C::f, the semantic parent is the class C, of which this function is a member.

In the example above, both declarations of C::f have C as their semantic context, while the lexical context of the first C::f is C and the lexical context of the second C::f is the translation unit.

For global declarations, the semantic parent is the translation unit.

NOTE: Causes re-parsing of the current translation unit.

Supported in filetypes: c, cpp, objc, objcpp, cuda

The GetDoc subcommand

Displays the preview window populated with quick info about the identifier under the cursor. Depending on the file type, this includes things like:

  • The type or declaration of identifier,
  • Doxygen/javadoc comments,
  • Python docstrings,
  • etc.

Supported in filetypes: c, cpp, objc, objcpp, cuda, cs, go, java, javascript, python, typescript, rust

The GetDocImprecise subcommand

WARNING: This command trades correctness for speed!

Same as the GetDoc command except that it doesn't recompile the file with libclang before looking up nodes in the AST. This can be very useful when you're editing files that take long to compile but you know that you haven't made any changes since the last parse that would lead to incorrect docs. When you're just browsing around your codebase, this command can spare you quite a bit of latency.

Supported in filetypes: c, cpp, objc, objcpp, cuda

Refactoring Commands

These commands make changes to your source code in order to perform refactoring or code correction. YouCompleteMe does not perform any action which cannot be undone, and never saves or writes files to the disk.

The FixIt subcommand

Where available, attempts to make changes to the buffer to correct diagnostics on the current line. Where multiple suggestions are available (such as when there are multiple ways to resolve a given warning, or where multiple diagnostics are reported for the current line), the options are presented and one can be selected.

Completers which provide diagnostics may also provide trivial modifications to the source in order to correct the diagnostic. Examples include syntax errors such as missing trailing semi-colons, spurious characters, or other errors which the semantic engine can deterministically suggest corrections.

If no fix-it is available for the current line, or there is no diagnostic on the current line, this command has no effect on the current buffer. If any modifications are made, the number of changes made to the buffer is echo'd and the user may use the editor's undo command to revert.

When a diagnostic is available, and g:ycm_echo_current_diagnostic is set to 1, then the text (FixIt) is appended to the echo'd diagnostic when the completer is able to add this indication. The text (FixIt available) is also appended to the diagnostic text in the output of the :YcmDiags command for any diagnostics with available fix-its (where the completer can provide this indication).

NOTE: Causes re-parsing of the current translation unit.

Supported in filetypes: c, cpp, objc, objcpp, cuda, cs, go, java, javascript, rust, typescript

The RefactorRename <new name> subcommand

In supported file types, this command attempts to perform a semantic rename of the identifier under the cursor. This includes renaming declarations, definitions and usages of the identifier, or any other language-appropriate action. The specific behavior is defined by the semantic engine in use.

Similar to FixIt, this command applies automatic modifications to your source files. Rename operations may involve changes to multiple files, which may or may not be open in Vim buffers at the time. YouCompleteMe handles all of this for you. The behavior is described in the following section.

Supported in filetypes: c, cpp, objc, objcpp, cuda, java, javascript, python, typescript, rust, cs

Multi-file Refactor

When a Refactor or FixIt command touches multiple files, YouCompleteMe attempts to apply those modifications to any existing open, visible buffer in the current tab. If no such buffer can be found, YouCompleteMe opens the file in a new small horizontal split at the top of the current window, applies the change, and then hides the window. NOTE: The buffer remains open, and must be manually saved. A confirmation dialog is opened prior to doing this to remind you that this is about to happen.

Once the modifications have been made, the quickfix list (see :help quickfix) is populated with the locations of all modifications. This can be used to review all automatic changes made by using :copen. Typically, use the CTRL-W <enter> combination to open the selected file in a new split. It is possible to customize how the quickfix window is opened by using the YcmQuickFixOpened autocommand.

The buffers are not saved automatically. That is, you must save the modified buffers manually after reviewing the changes from the quickfix list. Changes can be undone using Vim's powerful undo features (see :help undo). Note that Vim's undo is per-buffer, so to undo all changes, the undo commands must be applied in each modified buffer separately.

NOTE: While applying modifications, Vim may find files which are already open and have a swap file. The command is aborted if you select Abort or Quit in any such prompts. This leaves the Refactor operation partially complete and must be manually corrected using Vim's undo features. The quickfix list is not populated in this case. Inspect :buffers or equivalent (see :help buffers) to see the buffers that were opened by the command.

The Format subcommand

This command formats the whole buffer or some part of it according to the value of the Vim options shiftwidth and expandtab (see :h 'sw' and :h et respectively). To format a specific part of your document, you can either select it in one of Vim's visual modes (see :h visual-use) and run the command or directly enter the range on the command line, e.g. :2,5YcmCompleter Format to format it from line 2 to line 5.

Supported in filetypes: c, cpp, objc, objcpp, cuda, java, javascript, go, typescript, rust, cs

The OrganizeImports subcommand

This command removes unused imports and sorts imports in the current file. It can also group imports from the same module in TypeScript and resolves imports in Java.

Supported in filetypes: java, javascript, typescript

Miscellaneous Commands

These commands are for general administration, rather than IDE-like features. They cover things like the semantic engine server instance and compilation flags.

The ExecuteCommand <args> subcommand

Some LSP completers (currently only Java completers) support executing server specific commands. Consult the jdt.ls documentation to find out what commands are supported and which arguments are expected.

The support for ExecuteCommand was implemented to support plugins like Vimspector to debug java, but isn't limited to that specific use case.

The RestartServer subcommand

Restarts the downstream semantic engine server for those semantic engines that work as separate servers that YCM talks to.

Supported in filetypes: c, cpp, objc, objcpp, cuda, cs, go, java, javascript, rust, typescript

The ReloadSolution subcommand

Instruct the Omnisharp-Roslyn server to clear its cache and reload all files from disk. This is useful when files are added, removed, or renamed in the solution, files are changed outside of Vim, or whenever Omnisharp-Roslyn cache is out-of-sync.

Supported in filetypes: cs

Functions

The youcompleteme#GetErrorCount function

Get the number of YCM Diagnostic errors. If no errors are present, this function returns 0.

For example:

  call youcompleteme#GetErrorCount()

Both this function and youcompleteme#GetWarningCount can be useful when integrating YCM with other Vim plugins. For example, a lightline user could add a diagnostics section to their statusline which would display the number of errors and warnings.

The youcompleteme#GetWarningCount function

Get the number of YCM Diagnostic warnings. If no warnings are present, this function returns 0.

For example:

  call youcompleteme#GetWarningCount()

The youcompleteme#GetCommandResponse( ... ) function

Run a completer subcommand and return the result as a string. This can be useful for example to display the GetGoc output in a popup window, e.g.:

let s:ycm_hover_popup = -1
function s:Hover()
  let response = youcompleteme#GetCommandResponse( 'GetDoc' )
  if response == ''
    return
  endif

  call popup_hide( s:ycm_hover_popup )
  let s:ycm_hover_popup = popup_atcursor( balloon_split( response ), {} )
endfunction

" CursorHold triggers in normal mode after a delay
autocmd CursorHold * call s:Hover()
" Or, if you prefer, a mapping:
nnoremap <silent> <leader>D :call <SID>Hover()<CR>

NOTE: This is only an example, for real hover support, see g:ycm_auto_hover.

If the completer subcommand result is not a string (for example, it's a FixIt or a Location), or if the completer subcommand raises an error, an empty string is returned, so that calling code does not have to check for complex error conditions.

The arguments to the function are the same as the arguments to the :YcmCompleter ex command, e.g. the name of the subcommand, followed by any additional subcommand arguments. As with the YcmCompleter command, if the first argument is ft=<filetype> the request is targeted at the specified filetype completer. This is an advanced usage and not necessary in most cases.

NOTE: The request is run synchronously and blocks Vim until the response is received, so we do not recommend running this as part of an autocommand that triggers frequently.

The youcompleteme#GetCommandResponseAsync( callback, ... ) function

This works exactly like youcompleteme#GetCommandResponse, except that instead of returning the result, you supply a callback argument. This argument must be a FuncRef to a function taking a single argument response. This callback will be called with the command response at some point later, or immediately.

As with youcompleteme#GetCommandResponse(), this function will call the callback with '' (an empty string) if the request is not sent, or if there was some sort of error.

Here's an example that's similar to the one above:


let s:ycm_hover_popup = -1
function! s:ShowDataPopup( response ) abort
  if response == ''
    return
  endif

  call popup_hide( s:ycm_hover_popup )
  let s:ycm_hover_popup = popup_atcursor( balloon_split( response ), {} )
endfunction

function! s:GetData() abort
  call youcompleteme#GetCommandResponseAsync(
    \ function( 's:ShowDataPopup' ),
    \ 'GetDoc' )
endfunction

autocommand CursorHold * call s:GetData()

Again, see g:ycm_auto_hover for proper hover support.

NOTE: The callback may be called immediately, in the stack frame that called this function.

NOTE: Only one command request can be outstanding at once. Attempting to request a second responses while the first is outstanding will result in the second callback being immediately called with ''.

Autocommands

The YcmLocationOpened autocommand

This User autocommand is fired when YCM opens the location list window in response to the YcmDiags command. By default, the location list window is opened to the bottom of the current window and its height is set to fit all entries. This behavior can be overridden by using the YcmLocationOpened autocommand which is triggered while the cursor is in the location list window. For instance:

function! s:CustomizeYcmLocationWindow()
  " Move the window to the top of the screen.
  wincmd K
  " Set the window height to 5.
  5wincmd _
  " Switch back to working window.
  wincmd p
endfunction

autocmd User YcmLocationOpened call s:CustomizeYcmLocationWindow()

The YcmQuickFixOpened autocommand

This User autocommand is fired when YCM opens the quickfix window in response to the GoTo* and RefactorRename subcommands. By default, the quickfix window is opened to full width at the bottom of the screen and its height is set to fit all entries. This behavior can be overridden by using the YcmQuickFixOpened autocommand which is triggered while the cursor is in the quickfix window. For instance:

function! s:CustomizeYcmQuickFixWindow()
  " Move the window to the top of the screen.
  wincmd K
  " Set the window height to 5.
  5wincmd _
endfunction

autocmd User YcmQuickFixOpened call s:CustomizeYcmQuickFixWindow()

Options

All options have reasonable defaults so if the plug-in works after installation you don't need to change any options. These options can be configured in your vimrc script by including a line like this:

let g:ycm_min_num_of_chars_for_completion = 1

Note that after changing an option in your vimrc script you have to restart ycmd with the :YcmRestartServer command for the changes to take effect.

The g:ycm_min_num_of_chars_for_completion option

This option controls the number of characters the user needs to type before identifier-based completion suggestions are triggered. For example, if the option is set to 2, then when the user types a second alphanumeric character after a whitespace character, completion suggestions will be triggered. This option is NOT used for semantic completion.

Setting this option to a high number like 99 effectively turns off the identifier completion engine and just leaves the semantic engine.

Default: 2

let g:ycm_min_num_of_chars_for_completion = 2

The g:ycm_min_num_identifier_candidate_chars option

This option controls the minimum number of characters that a completion candidate coming from the identifier completer must have to be shown in the popup menu.

A special value of 0 means there is no limit.

NOTE: This option only applies to the identifier completer; it has no effect on the various semantic completers.

Default: 0

let g:ycm_min_num_identifier_candidate_chars = 0

The g:ycm_max_num_candidates option

This option controls the maximum number of semantic completion suggestions shown in the completion menu. This only applies to suggestions from semantic completion engines; see the g:ycm_max_identifier_candidates option to limit the number of suggestions from the identifier-based engine.

A special value of 0 means there is no limit.

NOTE: Setting this option to 0 or to a value greater than 100 is not recommended as it will slow down completion when there are a very large number of suggestions.

Default: 50

let g:ycm_max_num_candidates = 50

The g:ycm_max_num_candidates_to_detail option

Some completion engines require completion candidates to be 'resolved' in order to get detailed info such as inline documentation, method signatures etc. This information is displayed by YCM in the preview window, or if completeopt contains popup, in the info popup next to the completion menu.

By default, if the info popup is in use, and there are more than 10 candidates, YCM will defer resolving candidates until they are selected in the completion menu. Otherwise, YCM must resolve the details upfront, which can be costly.

If neither popup nor preview are in completeopt, YCM disables resolving altogether as the information would not be displayed.

This setting can be used to override these defaults and controls the number of completion candidates that should be resolved upfront. Typically users do not need to change this, as YCM will work out an appropriate value based on your completeopt and g:ycm_add_preview_to_completeopt settings. However, you may override this calculation by setting this value to a number:

  • -1 - Resolve all candidates up front
  • 0 - Never resolve any candidates up front.
  • > 0 - Resolve up to this many candidates up front. If the number of candidates is greater than this value, no candidates are resolved.

In the later two cases, if completeopt contains popup, then candidates are resolved on demand asynchronously.

Default:

  • 0 if neither popup nor preview are in completeopt.
  • 10 if popup is in completeopt.
  • -1 if preview is in completeopt.

Example:

let g:ycm_max_num_candidates_to_detail = 0

The g:ycm_max_num_identifier_candidates option

This option controls the maximum number of completion suggestions from the identifier-based engine shown in the completion menu.

A special value of 0 means there is no limit.

NOTE: Setting this option to 0 or to a value greater than 100 is not recommended as it will slow down completion when there are a very large number of suggestions.

Default: 10

let g:ycm_max_num_identifier_candidates = 10

The g:ycm_auto_trigger option

When set to 0, this option turns off YCM's identifier completer (the as-you-type popup) and the semantic triggers (the popup you'd get after typing . or -> in say C++). You can still force semantic completion with the <C-Space> shortcut.

If you want to just turn off the identifier completer but keep the semantic triggers, you should set g:ycm_min_num_of_chars_for_completion to a high number like 99.

Default: 1

let g:ycm_auto_trigger = 1

The g:ycm_filetype_whitelist option

This option controls for which Vim filetypes (see :h filetype) should YCM be turned on. The option value should be a Vim dictionary with keys being filetype strings (like python, cpp, etc.) and values being unimportant (the dictionary is used like a hash set, meaning that only the keys matter).

The * key is special and matches all filetypes. By default, the whitelist contains only this * key.

YCM also has a g:ycm_filetype_blacklist option that lists filetypes for which YCM shouldn't be turned on. YCM will work only in filetypes that both the whitelist and the blacklist allow (the blacklist "allows" a filetype by not having it as a key).

For example, let's assume you want YCM to work in files with the cpp filetype. The filetype should then be present in the whitelist either directly (cpp key in the whitelist) or indirectly through the special * key. It should not be present in the blacklist.

Filetypes that are blocked by the either of the lists will be completely ignored by YCM, meaning that neither the identifier-based completion engine nor the semantic engine will operate in them.

You can get the filetype of the current file in Vim with :set ft?.

Default: {'*': 1}

let g:ycm_filetype_whitelist = {'*': 1}

** Completion in buffers with no filetype **

There is one exception to the above rule. YCM supports completion in buffers with no filetype set, but this must be explicitly whitelisted. To identify buffers with no filetype, we use the ycm_nofiletype pseudo-filetype. To enable completion in buffers with no filetype, set:

let g:ycm_filetype_whitelist = {
  \ '*': 1,
  \ 'ycm_nofiletype': 1
  \ }

The g:ycm_filetype_blacklist option

This option controls for which Vim filetypes (see :h filetype) should YCM be turned off. The option value should be a Vim dictionary with keys being filetype strings (like python, cpp, etc.) and values being unimportant (the dictionary is used like a hash set, meaning that only the keys matter).

See the g:ycm_filetype_whitelist option for more details on how this works.

Default: [see next line]

let g:ycm_filetype_blacklist = {
      \ 'tagbar': 1,
      \ 'notes': 1,
      \ 'markdown': 1,
      \ 'netrw': 1,
      \ 'unite': 1,
      \ 'text': 1,
      \ 'vimwiki': 1,
      \ 'pandoc': 1,
      \ 'infolog': 1,
      \ 'leaderf': 1,
      \ 'mail': 1
      \}

In addition, ycm_nofiletype (representing buffers with no filetype set) is blacklisted if ycm_nofiletype is not explicitly whitelisted (using g:ycm_filetype_whitelist).

The g:ycm_filetype_specific_completion_to_disable option

This option controls for which Vim filetypes (see :h filetype) should the YCM semantic completion engine be turned off. The option value should be a Vim dictionary with keys being filetype strings (like python, cpp, etc.) and values being unimportant (the dictionary is used like a hash set, meaning that only the keys matter). The listed filetypes will be ignored by the YCM semantic completion engine, but the identifier-based completion engine will still trigger in files of those filetypes.

Note that even if semantic completion is not turned off for a specific filetype, you will not get semantic completion if the semantic engine does not support that filetype.

You can get the filetype of the current file in Vim with :set ft?.

Default: [see next line]

let g:ycm_filetype_specific_completion_to_disable = {
      \ 'gitcommit': 1
      \}

The g:ycm_filepath_blacklist option

This option controls for which Vim filetypes (see :h filetype) should filepath completion be disabled. The option value should be a Vim dictionary with keys being filetype strings (like python, cpp, etc.) and values being unimportant (the dictionary is used like a hash set, meaning that only the keys matter).

The * key is special and matches all filetypes. Use this key if you want to completely disable filepath completion:

let g:ycm_filepath_blacklist = {'*': 1}

You can get the filetype of the current file in Vim with :set ft?.

Default: [see next line]

let g:ycm_filepath_blacklist = {
      \ 'html': 1,
      \ 'jsx': 1,
      \ 'xml': 1,
      \}

The g:ycm_show_diagnostics_ui option

When set, this option turns on YCM's diagnostic display features. See the Diagnostic display section in the User Manual for more details.

Specific parts of the diagnostics UI (like the gutter signs, text highlighting, diagnostic echo and auto location list population) can be individually turned on or off. See the other options below for details.

Note that YCM's diagnostics UI is only supported for C-family languages.

When set, this option also makes YCM remove all Syntastic checkers set for the c, cpp, objc, objcpp, and cuda filetypes since this would conflict with YCM's own diagnostics UI.

If you're using YCM's identifier completer in C-family languages but cannot use the clang-based semantic completer for those languages and want to use the GCC Syntastic checkers, unset this option.

Default: 1

let g:ycm_show_diagnostics_ui = 1

The g:ycm_error_symbol option

YCM will use the value of this option as the symbol for errors in the Vim gutter.

This option is part of the Syntastic compatibility layer; if the option is not set, YCM will fall back to the value of the g:syntastic_error_symbol option before using this option's default.

Default: >>

let g:ycm_error_symbol = '>>'

The g:ycm_warning_symbol option

YCM will use the value of this option as the symbol for warnings in the Vim gutter.

This option is part of the Syntastic compatibility layer; if the option is not set, YCM will fall back to the value of the g:syntastic_warning_symbol option before using this option's default.

Default: >>

let g:ycm_warning_symbol = '>>'

The g:ycm_enable_diagnostic_signs option

When this option is set, YCM will put icons in Vim's gutter on lines that have a diagnostic set. Turning this off will also turn off the YcmErrorLine and YcmWarningLine highlighting.

This option is part of the Syntastic compatibility layer; if the option is not set, YCM will fall back to the value of the g:syntastic_enable_signs option before using this option's default.

Default: 1

let g:ycm_enable_diagnostic_signs = 1

The g:ycm_enable_diagnostic_highlighting option

When this option is set, YCM will highlight regions of text that are related to the diagnostic that is present on a line, if any.

This option is part of the Syntastic compatibility layer; if the option is not set, YCM will fall back to the value of the g:syntastic_enable_highlighting option before using this option's default.

Default: 1

let g:ycm_enable_diagnostic_highlighting = 1

The g:ycm_echo_current_diagnostic option

When this option is set, YCM will echo the text of the diagnostic present on the current line when you move your cursor to that line. If a FixIt is available for the current diagnostic, then (FixIt) is appended.

This option is part of the Syntastic compatibility layer; if the option is not set, YCM will fall back to the value of the g:syntastic_echo_current_error option before using this option's default.

Default: 1

let g:ycm_echo_current_diagnostic = 1

The g:ycm_auto_hover option

This option controls whether or not YCM shows documentation in a popup at the cursor location after a short delay. Only supported in Vim.

When this option is set to 'CursorHold', the popup is displayed on the CursorHold autocommand. See :help CursorHold for the details, but this means that it is displayed after updatetime milliseconds. When set to an empty string, the popup is not automatically displayed.

In addition to this setting, there is the <plug>(YCMHover) mapping, which can be used to manually trigger or hide the popup (it works like a toggle). For example:

nmap <leader>D <plug>(YCMHover)

After dismissing the popup with this mapping, it will not be automatically triggered again until the cursor is moved (i.e. CursorMoved autocommand).

The displayed documentation depends on what the completer for the current language supports. It's selected heuristically in this order of preference:

  1. GetHover with markdown syntax
  2. GetDoc with no syntax
  3. GetType with the syntax of the current file.

You can customise this by manually setting up b:ycm_hover to your liking. This buffer-local variable can be set to a dictionary with the following keys:

  • command: The YCM completer subcommand which should be run on hover
  • syntax: The syntax to use (as in set syntax=) in the popup window for highlighting.

For example, to use C/C++ syntax highlighting in the popup for C-family languages, add something like this to your vimrc:

augroup MyYCMCustom
  autocmd!
  autocmd FileType c,cpp let b:ycm_hover = {
    \ 'command': 'GetDoc',
    \ 'syntax': &filetype
    \ }
augroup END

Default: 'CursorHold'

The g:ycm_filter_diagnostics option

This option controls which diagnostics will be rendered by YCM. This option holds a dictionary of key-values, where the keys are Vim's filetype strings delimited by commas and values are dictionaries describing the filter.

A filter is a dictionary of key-values, where the keys are the type of filter, and the value is a list of arguments to that filter. In the case of just a single item in the list, you may omit the brackets and just provide the argument directly. If any filter matches a diagnostic, it will be dropped and YCM will not render it.

The following filter types are supported:

  • "regex": Accepts a string regular expression. This type matches when the regex (treated as case-insensitive) is found anywhere in the diagnostic text (re.search, not re.match)
  • "level": Accepts a string level, either "warning" or "error." This type matches when the diagnostic has the same level, that is, specifying level: "error" will remove all errors from the diagnostics.

NOTE: The regex syntax is NOT Vim's, it's Python's.

Default: {}

The following example will do, for java filetype only:

  • Remove all error level diagnostics, and,
  • Also remove anything that contains ta<something>co
let g:ycm_filter_diagnostics = {
  \ "java": {
  \      "regex": [ "ta.+co", ... ],
  \      "level": "error",
  \      ...
  \    }
  \ }

The g:ycm_always_populate_location_list option

When this option is set, YCM will populate the location list automatically every time it gets new diagnostic data. This option is off by default so as not to interfere with other data you might have placed in the location list.

See :help location-list in Vim to learn more about the location list.

This option is part of the Syntastic compatibility layer; if the option is not set, YCM will fall back to the value of the g:syntastic_always_populate_loc_list option before using this option's default.

Note: if YCM's errors aren't visible, it might be that YCM is updating an older location list. See :help :lhistory and :lolder.

Default: 0

let g:ycm_always_populate_location_list = 0

The g:ycm_open_loclist_on_ycm_diags option

When this option is set, :YcmDiags will automatically open the location list after forcing a compilation and filling the list with diagnostic data.

See :help location-list in Vim to learn more about the location list.

Default: 1

let g:ycm_open_loclist_on_ycm_diags = 1

The g:ycm_complete_in_comments option

When this option is set to 1, YCM will show the completion menu even when typing inside comments.

Default: 0

let g:ycm_complete_in_comments = 0

The g:ycm_complete_in_strings option

When this option is set to 1, YCM will show the completion menu even when typing inside strings.

Note that this is turned on by default so that you can use the filename completion inside strings. This is very useful for instance in C-family files where typing #include " will trigger the start of filename completion. If you turn off this option, you will turn off filename completion in such situations as well.

Default: 1

let g:ycm_complete_in_strings = 1

The g:ycm_collect_identifiers_from_comments_and_strings option

When this option is set to 1, YCM's identifier completer will also collect identifiers from strings and comments. Otherwise, the text in comments and strings will be ignored.

Default: 0

let g:ycm_collect_identifiers_from_comments_and_strings = 0

The g:ycm_collect_identifiers_from_tags_files option

When this option is set to 1, YCM's identifier completer will also collect identifiers from tags files. The list of tags files to examine is retrieved from the tagfiles() Vim function which examines the tags Vim option. See :h 'tags' for details.

YCM will re-index your tags files if it detects that they have been modified.

The only supported tag format is the Exuberant Ctags format. The format from "plain" ctags is NOT supported. Ctags needs to be called with the --fields=+l option (that's a lowercase L, not a one) because YCM needs the language:<lang> field in the tags output.

See the FAQ for pointers if YCM does not appear to read your tag files.

This option is off by default because it makes Vim slower if your tags are on a network directory.

Default: 0

let g:ycm_collect_identifiers_from_tags_files = 0

The g:ycm_seed_identifiers_with_syntax option

When this option is set to 1, YCM's identifier completer will seed its identifier database with the keywords of the programming language you're writing.

Since the keywords are extracted from the Vim syntax file for the filetype, all keywords may not be collected, depending on how the syntax file was written. Usually at least 95% of the keywords are successfully extracted.

Default: 0

let g:ycm_seed_identifiers_with_syntax = 0

The g:ycm_extra_conf_vim_data option

If you're using semantic completion for C-family files, this option might come handy; it's a way of sending data from Vim to your Settings function in your .ycm_extra_conf.py file.

This option is supposed to be a list of VimScript expression strings that are evaluated for every request to the ycmd server and then passed to your Settings function as a client_data keyword argument.

For instance, if you set this option to ['v:version'], your Settings function will be called like this:

# The '801' value is of course contingent on Vim 8.1; in 8.0 it would be '800'
Settings( ..., client_data = { 'v:version': 801 } )

So the client_data parameter is a dictionary mapping Vim expression strings to their values at the time of the request.

The correct way to define parameters for your Settings function:

def Settings( **kwargs ):

You can then get to client_data with kwargs['client_data'].

Default: []

let g:ycm_extra_conf_vim_data = []

The g:ycm_server_python_interpreter option

YCM will by default search for an appropriate Python interpreter on your system. You can use this option to override that behavior and force the use of a specific interpreter of your choosing.

NOTE: This interpreter is only used for the ycmd server. The YCM client running inside Vim always uses the Python interpreter that's embedded inside Vim.

Default: ''

let g:ycm_server_python_interpreter = ''

The g:ycm_keep_logfiles option

When this option is set to 1, YCM and the ycmd completion server will keep the logfiles around after shutting down (they are deleted on shutdown by default).

To see where the logfiles are, call :YcmDebugInfo.

Default: 0

let g:ycm_keep_logfiles = 0

The g:ycm_log_level option

The logging level that YCM and the ycmd completion server use. Valid values are the following, from most verbose to least verbose:

  • debug
  • info
  • warning
  • error
  • critical

Note that debug is very verbose.

Default: info

let g:ycm_log_level = 'info'

The g:ycm_auto_start_csharp_server option

When set to 1, the OmniSharp-Roslyn server will be automatically started (once per Vim session) when you open a C# file.

Default: 1

let g:ycm_auto_start_csharp_server = 1

The g:ycm_auto_stop_csharp_server option

When set to 1, the OmniSharp-Roslyn server will be automatically stopped upon closing Vim.

Default: 1

let g:ycm_auto_stop_csharp_server = 1

The g:ycm_csharp_server_port option

When g:ycm_auto_start_csharp_server is set to 1, specifies the port for the OmniSharp-Roslyn server to listen on. When set to 0 uses an unused port provided by the OS.

Default: 0

let g:ycm_csharp_server_port = 0

The g:ycm_csharp_insert_namespace_expr option

By default, when YCM inserts a namespace, it will insert the using statement under the nearest using statement. You may prefer that the using statement is inserted somewhere, for example, to preserve sorting. If so, you can set this option to override this behavior.

When this option is set, instead of inserting the using statement itself, YCM will set the global variable g:ycm_namespace_to_insert to the namespace to insert, and then evaluate this option's value as an expression. The option's expression is responsible for inserting the namespace - the default insertion will not occur.

Default: ''

let g:ycm_csharp_insert_namespace_expr = ''

The g:ycm_add_preview_to_completeopt option

When this option is set to 1, YCM will add the preview string to Vim's completeopt option (see :h completeopt). If your completeopt option already has preview set, there will be no effect. Alternatively, when set to popup and your version of Vim supports popup windows (see :help popup), the popup string will be used instead. You can see the current state of your completeopt setting with :set completeopt? (yes, the question mark is important).

When preview is present in completeopt, YCM will use the preview window at the top of the file to store detailed information about the current completion candidate (but only if the candidate came from the semantic engine). For instance, it would show the full function prototype and all the function overloads in the window if the current completion is a function name.

When popup is present in completeopt, YCM will instead use a popup window to the side of the completion popup for storing detailed information about the current completion candidate. In addition, YCM may truncate the detailed completion information in order to give the popup sufficient room to display that detailed information.

Default: 0

let g:ycm_add_preview_to_completeopt = 0

The g:ycm_autoclose_preview_window_after_completion option

When this option is set to 1, YCM will auto-close the preview window after the user accepts the offered completion string. If there is no preview window triggered because there is no preview string in completeopt, this option is irrelevant. See the g:ycm_add_preview_to_completeopt option for more details.

Default: 0

let g:ycm_autoclose_preview_window_after_completion = 0

The g:ycm_autoclose_preview_window_after_insertion option

When this option is set to 1, YCM will auto-close the preview window after the user leaves insert mode. This option is irrelevant if g:ycm_autoclose_preview_window_after_completion is set or if no preview window is triggered. See the g:ycm_add_preview_to_completeopt option for more details.

Default: 0

let g:ycm_autoclose_preview_window_after_insertion = 0

The g:ycm_max_diagnostics_to_display option

This option controls the maximum number of diagnostics shown to the user when errors or warnings are detected in the file. This option is only relevant for the C-family, C#, Java, JavaScript, and TypeScript languages.

A special value of 0 means there is no limit.

Default: 30

let g:ycm_max_diagnostics_to_display = 30

The g:ycm_key_list_select_completion option

This option controls the key mappings used to select the first completion string. Invoking any of them repeatedly cycles forward through the completion list.

Some users like adding <Enter> to this list.

Default: ['<TAB>', '<Down>']

let g:ycm_key_list_select_completion = ['<TAB>', '<Down>']

The g:ycm_key_list_previous_completion option

This option controls the key mappings used to select the previous completion string. Invoking any of them repeatedly cycles backwards through the completion list.

Note that one of the defaults is <S-TAB> which means Shift-TAB. That mapping will probably only work in GUI Vim (Gvim or MacVim) and not in plain console Vim because the terminal usually does not forward modifier key combinations to Vim.

Default: ['<S-TAB>', '<Up>']

let g:ycm_key_list_previous_completion = ['<S-TAB>', '<Up>']

The g:ycm_key_list_stop_completion option

This option controls the key mappings used to close the completion menu. This is useful when the menu is blocking the view, when you need to insert the <TAB> character, or when you want to expand a snippet from UltiSnips and navigate through it.

Default: ['<C-y>']

let g:ycm_key_list_stop_completion = ['<C-y>']

The g:ycm_key_invoke_completion option

This option controls the key mapping used to invoke the completion menu for semantic completion. By default, semantic completion is triggered automatically after typing ., -> and :: in insert mode (if semantic completion support has been compiled in). This key mapping can be used to trigger semantic completion anywhere. Useful for searching for top-level functions and classes.

Console Vim (not Gvim or MacVim) passes <Nul> to Vim when the user types <C-Space> so YCM will make sure that <Nul> is used in the map command when you're editing in console Vim, and <C-Space> in GUI Vim. This means that you can just press <C-Space> in both console and GUI Vim and YCM will do the right thing.

Setting this option to an empty string will make sure no mapping is created.

Default: <C-Space>

let g:ycm_key_invoke_completion = '<C-Space>'

The g:ycm_key_detailed_diagnostics option

This option controls the key mapping used to show the full diagnostic text when the user's cursor is on the line with the diagnostic. It basically calls :YcmShowDetailedDiagnostic.

Setting this option to an empty string will make sure no mapping is created.

Default: <leader>d

let g:ycm_key_detailed_diagnostics = '<leader>d'

The g:ycm_global_ycm_extra_conf option

Normally, YCM searches for a .ycm_extra_conf.py file for compilation flags (see the User Guide for more details on how this works). This option specifies a fallback path to a config file which is used if no .ycm_extra_conf.py is found.

You can place such a global file anywhere in your filesystem.

Default: ''

let g:ycm_global_ycm_extra_conf = ''

The g:ycm_confirm_extra_conf option

When this option is set to 1 YCM will ask once per .ycm_extra_conf.py file if it is safe to be loaded. This is to prevent execution of malicious code from a .ycm_extra_conf.py file you didn't write.

To selectively get YCM to ask/not ask about loading certain .ycm_extra_conf.py files, see the g:ycm_extra_conf_globlist option.

Default: 1

let g:ycm_confirm_extra_conf = 1

The g:ycm_extra_conf_globlist option

This option is a list that may contain several globbing patterns. If a pattern starts with a ! all .ycm_extra_conf.py files matching that pattern will be blacklisted, that is they won't be loaded and no confirmation dialog will be shown. If a pattern does not start with a ! all files matching that pattern will be whitelisted. Note that this option is not used when confirmation is disabled using g:ycm_confirm_extra_conf and that items earlier in the list will take precedence over the later ones.

Rules:

  • * matches everything
  • ? matches any single character
  • [seq] matches any character in seq
  • [!seq] matches any char not in seq

Example:

let g:ycm_extra_conf_globlist = ['~/dev/*','!~/*']
  • The first rule will match everything contained in the ~/dev directory so .ycm_extra_conf.py files from there will be loaded.
  • The second rule will match everything in the home directory so a .ycm_extra_conf.py file from there won't be loaded.
  • As the first rule takes precedence everything in the home directory excluding the ~/dev directory will be blacklisted.

NOTE: The glob pattern is first expanded with Python's os.path.expanduser() and then resolved with os.path.abspath() before being matched against the filename.

Default: []

let g:ycm_extra_conf_globlist = []

The g:ycm_filepath_completion_use_working_dir option

By default, YCM's filepath completion will interpret relative paths like ../ as being relative to the folder of the file of the currently active buffer. Setting this option will force YCM to always interpret relative paths as being relative to Vim's current working directory.

Default: 0

let g:ycm_filepath_completion_use_working_dir = 0

The g:ycm_semantic_triggers option

This option controls the character-based triggers for the various semantic completion engines. The option holds a dictionary of key-values, where the keys are Vim's filetype strings delimited by commas and values are lists of strings, where the strings are the triggers.

Setting key-value pairs on the dictionary adds semantic triggers to the internal default set (listed below). You cannot remove the default triggers, only add new ones.

A "trigger" is a sequence of one or more characters that trigger semantic completion when typed. For instance, C++ (cpp filetype) has . listed as a trigger. So when the user types foo., the semantic engine will trigger and serve foo's list of member functions and variables. Since C++ also has -> listed as a trigger, the same thing would happen when the user typed foo->.

It's also possible to use a regular expression as a trigger. You have to prefix your trigger with re! to signify it's a regex trigger. For instance, re!\w+\. would only trigger after the \w+\. regex matches.

NOTE: The regex syntax is NOT Vim's, it's Python's.

Default: [see next line]

let g:ycm_semantic_triggers =  {
  \   'c': ['->', '.'],
  \   'objc': ['->', '.', 're!\[[_a-zA-Z]+\w*\s', 're!^\s*[^\W\d]\w*\s',
  \            're!\[.*\]\s'],
  \   'ocaml': ['.', '#'],
  \   'cpp,cuda,objcpp': ['->', '.', '::'],
  \   'perl': ['->'],
  \   'php': ['->', '::'],
  \   'cs,d,elixir,go,groovy,java,javascript,julia,perl6,python,scala,typescript,vb': ['.'],
  \   'ruby,rust': ['.', '::'],
  \   'lua': ['.', ':'],
  \   'erlang': [':'],
  \ }

The g:ycm_cache_omnifunc option

Some omnicompletion engines do not work well with the YCM cache—in particular, they might not produce all possible results for a given prefix. By unsetting this option you can ensure that the omnicompletion engine is re-queried on every keypress. That will ensure all completions will be presented, but might cause stuttering and lagginess if the omnifunc is slow.

Default: 1

let g:ycm_cache_omnifunc = 1

The g:ycm_use_ultisnips_completer option

By default, YCM will query the UltiSnips plugin for possible completions of snippet triggers. This option can turn that behavior off.

Default: 1

let g:ycm_use_ultisnips_completer = 1

The g:ycm_goto_buffer_command option

Defines where GoTo* commands result should be opened. Can take one of the following values: 'same-buffer', 'split', or 'split-or-existing-window'. If this option is set to the 'same-buffer' but current buffer can not be switched (when buffer is modified and nohidden option is set), then result will be opened in a split. When the option is set to 'split-or-existing-window', if the result is already open in a window of the current tab page (or any tab pages with the :tab modifier; see below), it will jump to that window. Otherwise, the result will be opened in a split as if the option was set to 'split'.

To customize the way a new window is split, prefix the GoTo* command with one of the following modifiers: :aboveleft, :belowright, :botright, :leftabove, :rightbelow, :topleft, and :vertical. For instance, to split vertically to the right of the current window, run the command:

:rightbelow vertical YcmCompleter GoTo

To open in a new tab page, use the :tab modifier with the 'split' or 'split-or-existing-window' options e.g.:

:tab YcmCompleter GoTo

Default: 'same-buffer'

let g:ycm_goto_buffer_command = 'same-buffer'

The g:ycm_disable_for_files_larger_than_kb option

Defines the max size (in Kb) for a file to be considered for completion. If this option is set to 0 then no check is made on the size of the file you're opening.

Default: 1000

let g:ycm_disable_for_files_larger_than_kb = 1000

The g:ycm_use_clangd option

This option controls whether clangd should be used as completion engine for C-family languages. Can take one of the following values: 1, 0, with meanings:

  • 1: YCM will use clangd if clangd binary exists in third party or it was provided with ycm_clangd_binary_path option.
  • 0: YCM will never use clangd completer.

Default: 1

let g:ycm_use_clangd = 1

The g:ycm_clangd_binary_path option

When ycm_use_clangd option is set to 1, this option sets the path to clangd binary.

Default: ''

let g:ycm_clangd_binary_path = ''

The g:ycm_clangd_args option

This option controls the command line arguments passed to the clangd binary. It appends new options and overrides the existing ones.

Default: []

let g:ycm_clangd_args = []

The g:ycm_clangd_uses_ycmd_caching option

This option controls which ranking and filtering algorithm to use for completion items. It can take values:

  • 1: Uses ycmd's caching and filtering logic.
  • 0: Uses clangd's caching and filtering logic.

Default: 1

let g:ycm_clangd_uses_ycmd_caching = 1

The g:ycm_language_server option

This option lets YCM use an arbitrary Language Server Protocol (LSP) server, not unlike many other completion systems. The officially supported completers are favoured over custom LSP ones, so overriding an existing completer means first making sure YCM won't choose that existing completer in the first place.

A simple working example of this option can be found in the section called "Semantic Completion for Other Languages".

Many working examples can be found in the YCM lsp-examples repo.

Default: []

let g:ycm_language_server = []

The g:ycm_disable_signature_help option

This option allows you to disable all signature help for all completion engines. There is no way to disable it per-completer. This option is reserved, meaning that while signature help support remains experimental, its values and meaning may change and it may be removed in a future version.

Default: 0

" Disable signature help
let g:ycm_disable_signature_help = 1

The g:ycm_gopls_binary_path option

In case the system-wide gopls binary is newer than the bundled one, setting this option to the path of the system-wide gopls would make YCM use that one instead.

If the path is just gopls, YCM will search in $PATH.

The g:ycm_gopls_args option

Similar to the g:ycm_clangd_args, this option allows passing additional flags to the gopls command line.

Default: []

let g:ycm_gopls_args = []

The g:ycm_rls_binary_path and g:ycm_rustc_binary_path options

YCM no longer uses RLS for rust, and these options are therefore no longer supported.

To use a custom rust-analyzer, see g:ycm_rust_toolchain_root.

The g:ycm_rust_toolchain_root option

Optionally specify the path to a custom rust toolchain including at least a supported version of rust-analyzer.

The g:ycm_tsserver_binary_path option

Similar to the gopls path, this option tells YCM where is the TSServer executable located.

The g:ycm_roslyn_binary_path option

Similar to the gopls path, this option tells YCM where is the Omnisharp-Roslyn executable located.

The g:ycm_update_diagnostics_in_insert_mode option

With async diagnostics, LSP servers might send new diagnostics mid-typing. If seeing these new diagnostics while typing is not desired, this option can be set to 0.

Default: 1

let g:ycm_update_diagnostics_in_insert_mode = 1

FAQ

The FAQ section has been moved to the wiki.

Contributor Code of Conduct

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

Contact

If you have questions about the plugin or need help, please join the Gitter room or use the ycm-users mailing list.

If you have bug reports or feature suggestions, please use the issue tracker. Before you do, please carefully read CONTRIBUTING.md as this asks for important diagnostics which the team will use to help get you going.

The latest version of the plugin is available at https://ycm-core.github.io/YouCompleteMe/.

The author's homepage is https://val.markovic.io.

Please do NOT go to #vim on freenode for support. Please contact the YouCompleteMe maintainers directly using the contact details.

License

This software is licensed under the GPL v3 license. © 2015-2018 YouCompleteMe contributors

Sponsorship

If you like YCM so much that you're wiling to part with your hard-earned cash, please consider donating to one of the following charities, which are meaningful to the current maintainers (in no particular order):

Please note: The YCM maintainers do not specifically endorse nor necessarily have any relationship with the above charities. Disclosure: It is noted that one key maintainer is family with Trustees of Greyhound Rescue Wales.

GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.

简介

暂无描述 展开 收起
GPL-3.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
1
https://gitee.com/kt10/YouCompleteMe.git
git@gitee.com:kt10/YouCompleteMe.git
kt10
YouCompleteMe
YouCompleteMe
master

搜索帮助

14c37bed 8189591 565d56ea 8189591