# GMCORE **Repository Path**: kumarajivalee/GMCORE ## Basic Information - **Project Name**: GMCORE - **Description**: GMCORE是我们正在研发的全球高分辨率经纬网格大气模式动力框架。 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: u-pole - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 17 - **Created**: 2022-01-28 - **Last Updated**: 2022-05-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Introduction Grid-point Multiple-Conservation dynamical cORE Check barotropic test results [here](https://github.com/gmcore-project/gmcore/wiki/Test-Archive). # Status - [ ] Parallelization using MPI: - [X] 1D latitudional decomposition (done) - [X] 2D decomposition (partially done) - [ ] Optimize for X86 (~2021.04) - [ ] Nesting at middle and low latitudes (~2021.11). - [ ] Acceleration using GPU (~?). - [ ] Baroclinic version (~2021.02). - [X] Hydrostatic baroclinic version (done) - [X] Rossby-Haurwitz wave test - [X] Mountain induced wave test - [X] Steady state test - [X] Baroclinic wave test - [X] Held-Suarez test - [X] Nonhydrostatic baroclinic version (~2021.02) - [X] X-Z version (done) - [X] Quasi-2D mountain wave on reduced sphere (done) - [X] Circular mountain wave on reduced sphere (done) - [X] Internal gravity wave (done) - [ ] Advection module (~2021.04). - [ ] Incorporation with physics parameterisation (2021.05-2021.12). - [ ] Data assimilation (~?). # Usage First make sure you have installed netCDF library, and set `NETCDF_ROOT` environment variable to it. Then clone the repository: ``` $ git clone https://github.com/LASG-GAMIL/GMCORE gmcore ``` There is a Python script `run_tests.py`, which will clone the testbed repository, and run several tests, but it assumes MPI to be installed or SLURM job manager is available: ``` $ ./run_tests.py -w --slurm -q -n --ntasks-per-node ``` It will take some time to run the tests. When the tests are finished, cd to ``, and use some visualization tools, such as Panoply, to view the results. # Authors - Li Dong - Jianghao Li You are welcome to join our team to develop a robust global model!