# SE-ResNet **Repository Path**: l_emon/SE-ResNet ## Basic Information - **Project Name**: SE-ResNet - **Description**: No description available - **Primary Language**: Python - **License**: AFL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2021-02-17 - **Last Updated**: 2021-11-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Training Process ## Usage ### running on Ascend ```bash # distributed training Usage: sh run_distribute_train.sh se-resnet50 imagenet2012 [RANK_TABLE_FILE] [DATASET_PATH] # standalone training Usage: export DEVICE_ID=[0|1|2|3|4|5|6|7] python train.py --net=se-resnet50 --dataset=[cifar10|imagenet2012] --dataset_path=[DATASET_PATH] # run evaluation example Usage: export DEVICE_ID=[0|1|2|3|4|5|6|7] python eval.py --net=se-resnet50 --dataset=[cifar10|imagenet2012] --checkpoint_path=[CHECKPOINT_PATH] --dataset_path=[DATASET_PATH] ``` # Result - Evaluating SE-ResNet50 with ImageNet2012 dataset ```bash result: {'top_1_accuracy': 0.7771423969072165, 'top_5_accuracy': 0.9385067654639175} ckpt=train_parallel0/resnet-90_1251.ckpt ``` - Evaluating SE-ResNet50 with cifar10 dataset ```bash result: {'top_5_accuracy': 0.9987980769230769, 'top_1_accuracy': 0.9489182692307693} ckpt=resnet-90_1562.ckpt ```