# PyTorch-YOLOv3
**Repository Path**: laishenghui/PyTorch-YOLOv3
## Basic Information
- **Project Name**: PyTorch-YOLOv3
- **Description**: Minimal PyTorch implementation of YOLOv3
- **Primary Language**: Python
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2023-10-17
- **Last Updated**: 2023-10-17
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# PyTorch-YOLOv3
Minimal implementation of YOLOv3 in PyTorch.
## Table of Contents
- [PyTorch-YOLOv3](#pytorch-yolov3)
* [Table of Contents](#table-of-contents)
* [Paper](#paper)
* [Installation](#installation)
* [Inference](#inference)
* [Test](#test)
* [Train](#train)
* [Credit](#credit)
## Paper
### YOLOv3: An Incremental Improvement
_Joseph Redmon, Ali Farhadi_
**Abstract**
We present some updates to YOLO! We made a bunch
of little design changes to make it better. We also trained
this new network that’s pretty swell. It’s a little bigger than
last time but more accurate. It’s still fast though, don’t
worry. At 320 × 320 YOLOv3 runs in 22 ms at 28.2 mAP,
as accurate as SSD but three times faster. When we look
at the old .5 IOU mAP detection metric YOLOv3 is quite
good. It achieves 57.9 AP50 in 51 ms on a Titan X, compared
to 57.5 AP50 in 198 ms by RetinaNet, similar performance
but 3.8× faster. As always, all the code is online at
https://pjreddie.com/yolo/.
[[Paper]](https://pjreddie.com/media/files/papers/YOLOv3.pdf) [[Original Implementation]](https://github.com/pjreddie/darknet)
## Installation
$ git clone https://github.com/eriklindernoren/PyTorch-YOLOv3
$ cd PyTorch-YOLOv3/
$ sudo pip3 install -r requirements.txt
##### Download pretrained weights
$ cd weights/
$ bash download_weights.sh
##### Download COCO
$ cd data/
$ bash get_coco_dataset.sh
## Inference
Uses pretrained weights to make predictions on images. Below table displays the inference times when using as inputs images scaled to 256x256. The ResNet backbone measurements are taken from the YOLOv3 paper. The Darknet-53 measurement marked shows the inference time of this implementation on my 1080ti card.
| Backbone | GPU | FPS |
| ----------------------- |:--------:|:--------:|
| ResNet-101 | Titan X | 53 |
| ResNet-152 | Titan X | 37 |
| Darknet-53 (paper) | Titan X | 76 |
| Darknet-53 (this impl.) | 1080ti | 74 |
$ python3 detect.py --image_folder /data/samples



