diff --git a/.gitignore b/.gitignore index 5ac158d5c777460860dc9fcd810c2b0e5371cb53..c48334889fb351cfc6616cd6190031f95d9dbed0 100644 --- a/.gitignore +++ b/.gitignore @@ -4,4 +4,5 @@ __pycache__/ build .vscode/ /dataset -/logs \ No newline at end of file +/logo +.DS_Store \ No newline at end of file diff --git a/StreamLearn/Dataset/TV100Dataset.py b/StreamLearn/Dataset/TV100Dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..cfcdf22a3051f48bd7746d6536f5d006cdfd9042 --- /dev/null +++ b/StreamLearn/Dataset/TV100Dataset.py @@ -0,0 +1,37 @@ +import os +import numpy as np +from PIL import Image +import pandas as pd +from torchvision.transforms import transforms +from StreamLearn.Dataset.StreamDataset import StreamDataset +from torch.utils.data import DataLoader +from torchvision import datasets, transforms + + + +class TV100_Dataset(StreamDataset): + def __init__(self, args): + self.name = 'TV100' + self.args = args + self.root_path = 'StreamLearn/Dataset/tv100' + + + def load_data_set(self, train=True, transform=None): + if transform is None: + transform = transforms.Compose([ + transforms.Resize((224, 224)), + transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + ]) + if train: + dataset = datasets.ImageFolder(root=os.path.join(self.root_path, 'train'), transform=transform) + else: + dataset = datasets.ImageFolder(root=os.path.join(self.root_path, 'test'), transform=transform) + print(dataset.classes) + return datasets, dataset.classes + +if __name__ == "__main__": + Data = TV100_Dataset(args=None) + train_dataset, classes = Data.load_data_set(train=True) + test_dataset, _ = Data.load_data_set(train=False) + \ No newline at end of file diff --git a/StreamLearn/Dataset/dataset_information b/StreamLearn/Dataset/dataset_information index e881be4e7d2c003b30306f352b020cdc8576b85e..ed72aa83b704168d79556ba945817f31ea15b982 100644 --- a/StreamLearn/Dataset/dataset_information +++ b/StreamLearn/Dataset/dataset_information @@ -1,4 +1,8 @@ 数据集 通过百度网盘分享的文件:SAFC_datasets_CIFAR10.zip 链接:https://pan.baidu.com/s/1xtZjSxIIEMnUwoM7VXCzkQ -提取码:nudt \ No newline at end of file +提取码:nudt + +通过 Onedrive 链接获取文件: TV100.zip +https://njuedu-my.sharepoint.cn/personal/ky2409911_365_nju_edu_cn/_layouts/15/download.aspx?SourceUrl=%2Fpersonal%2Fky2409911%5F365%5Fnju%5Fedu%5Fcn%2FDocuments%2FTV100%2FTV100%2Ezip +解压之后放在 /dataset/tv100 路径下 \ No newline at end of file