# ML-notes **Repository Path**: laohuahuahua/ML-notes ## Basic Information - **Project Name**: ML-notes - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2020-07-15 - **Last Updated**: 2020-12-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ML-notes notes about machine learning 很喜欢一句话:**应用之道,存乎一心**,与大家共勉 ps:如果我的笔记对你有帮助,给个star叭!也希望大家点一点链接,给我更多的更新动力~ GitAds > ML配套Assignments (ppt+code):https://github.com/Sakura-gh/ML-assignments > > 内容包括:Regression, Classification, CNN, RNN, Explainable AI, Adversarial Attack, Network Compression, Seq2Seq, GAN, Transfer Learning, Meta Learning, Life-long Learning, Reforcement Learning. ##### pages the github page is: https://Sakura-gh.github.io/ML-notes you can also visit gitee page for quicker Internet in China: https://Sakura-gh.gitee.io/ml-notes ##### keras实践经验: [keras-tips](https://github.com/Sakura-gh/ML-notes/blob/master/keras-tips.md) ##### html链接: [1_Introduction]( https://sakura-gh.github.io/ML-notes/ML-notes-html/1_Introduction.html) [2_Regression Case Study]( https://sakura-gh.github.io/ML-notes/ML-notes-html/2_Regression-Case-Study.html) [3_Regression demo(Adagrad)]( https://sakura-gh.github.io/ML-notes/ML-notes-html/3_Regression-demo(Adagrad).html) [4_Where does the error come from](https://sakura-gh.github.io/ML-notes/ML-notes-html/4_Where-does-the-error-come-from.html) [5_Gradient Descent](https://sakura-gh.github.io/ML-notes/ML-notes-html/5_Gradient-Descent.html) [6_Classification](https://sakura-gh.github.io/ML-notes/ML-notes-html/6_Classification.html) [7_Logistic Regression](https://sakura-gh.github.io/ML-notes/ML-notes-html/7_Logistic-Regression.html) [8_Deep Learning](https://sakura-gh.github.io/ML-notes/ML-notes-html/8_Deep-Learning.html) [9_Backpropagation](https://sakura-gh.github.io/ML-notes/ML-notes-html/9_Backpropagation.html) [10_Keras](https://sakura-gh.github.io/ML-notes/ML-notes-html/10_Keras.html) [11_Convolutional Neural Network part1](https://sakura-gh.github.io/ML-notes/ML-notes-html/11_Convolutional-Neural-Network-part1.html) [12_Convolutional Neural Network part2](https://sakura-gh.github.io/ML-notes/ML-notes-html/12_Convolutional-Neural-Network-part2.html) [13_Tips for Deep Learning](https://sakura-gh.github.io/ML-notes/ML-notes-html/13_Tips-for-Deep-Learning.html) [14_Why Deep](https://sakura-gh.github.io/ML-notes/ML-notes-html/14_Why-Deep.html) [15_Semi-supervised Learning](https://sakura-gh.github.io/ML-notes/ML-notes-html/15_Semi-supervised-Learning.html) ##### csdn博客链接: [机器学习系列1-机器学习概念及介绍](https://blog.csdn.net/weixin_44406200/article/details/104060561) [机器学习系列2-回归案例研究](https://blog.csdn.net/weixin_44406200/article/details/104071036) [梯度下降代码举例:Gradient Descent Demo(Adagrad)](https://blog.csdn.net/weixin_44406200/article/details/104075986) [机器学习系列4-模型的误差来源及减少误差的方法](https://blog.csdn.net/weixin_44406200/article/details/104088554) [机器学习系列5-梯度下降法](https://blog.csdn.net/weixin_44406200/article/details/104256006) [机器学习系列6-分类问题(概率生成模型)](https://blog.csdn.net/weixin_44406200/article/details/104272160) [机器学习系列7-逻辑回归](https://blog.csdn.net/weixin_44406200/article/details/104288916) [机器学习系列8-深度学习简介](https://blog.csdn.net/weixin_44406200/article/details/104299958) [机器学习系列9-反向传播](https://blog.csdn.net/weixin_44406200/article/details/104310991) [机器学习系列10-手写数字识别(Keras2.0)](https://blog.csdn.net/weixin_44406200/article/details/104328947) [机器学习系列11-卷积神经网络CNN part1](https://blog.csdn.net/weixin_44406200/article/details/104370738) [机器学习系列12-卷积神经网络CNN part2](https://blog.csdn.net/weixin_44406200/article/details/104392592) [机器学习系列13-深度学习的技巧和优化方法](https://blog.csdn.net/weixin_44406200/article/details/104430737) [机器学习系列14-为什么要做“深度”学习](https://blog.csdn.net/weixin_44406200/article/details/104452873) [机器学习系列15-半监督学习](https://blog.csdn.net/weixin_44406200/article/details/106991717) ##### 代码链接: [Gradient Descent Demo(Adagrad)]( https://sakura-gh.github.io/ML-notes/code/Gradient-Descent-Demo/Gradient-Descent-Demo.html) [手写数字识别(Keras2.0)](https://github.com/Sakura-gh/ML-notes/blob/master/code/Digits-Detection/digits-detection.py) [手写数字识别CNN实现(Keras2.0)](https://github.com/Sakura-gh/ML-notes/blob/master/code/Digits-Detection/digits-detection-cnn.py) ##### Assignments链接: - [1_Regression](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/1_Regression) - [2_Classification](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/2_Classification) - [3_CNN](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/3_CNN) - [4_RNN](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/4_RNN) - [5_Explainable AI](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/5_Explainable-AI) - [6_Adversarial Attack](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/6_Adversarial-Attack) - [7_Network Compression](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/7_Network-Compression) - [8_Seq2Seq](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/8_Seq2Seq) - [9_Unsupervised Learning](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/9_Unsupervised-Learning) - [10_Anomaly Detection](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/10_Anomaly-Detection) - [11_GAN](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/11_GAN) - [12_Transfer Learning](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/12_Transfer-Learning) - [13_Meta Learning](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/13_Meta-Learning) - [14_Life Long Learning](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/14_Life-Long-Learning) - [15_Reinforcement Learning](https://github.com/Sakura-gh/ML-assignments/tree/master/Assignment/15_Reinforcement-Learning) ##### LICENSE: GPL-2.0 ##### 温馨提示: 图片加载可能会有些许缓慢,请耐心等待\\(\^o\^)/ ##### 更新说明: 最近打算创建一个微信公众号用于分享我在浙江大学计算机学院学习期间所记录的知识笔记和项目,暑假开始长期更新(也包括这个未完成的ML笔记),欢迎大家关注公众号"Sakura的知识库"