# SPLT **Repository Path**: lc790/SPLT ## Basic Information - **Project Name**: SPLT - **Description**: `Skimming-Perusal' Tracking: A Framework for Real-Time and Robust Long-term Tracking - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-06-23 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # `Skimming-Perusal' Tracking: A Framework for Real-Time and Robust Long-term Tracking ![splt](https://github.com/iiau-tracker/SPLT/blob/master/results/SPLT.png) ### GOOD NEWS ! ! ! Our code has supported **python3.6** Welcome to try(checkout to py36 branch) if you want to run our tracker with **python3.6**. This is the official code for the ICCV 2019 paper[[arxiv]](https://arxiv.org/abs/1909.01840). This code has been tested on - RTX 2080Ti - CUDA 10.0 + cuDNN 7.6 / CUDA 9.0 + cuDNN 7.1.2 - Python 2.7 - Ubuntu 18.04.2 LTS Please cite our paper if you find it useful for your research. ``` @inproceedings{ iccv19_SPLT, title={`Skimming-Perusal' Tracking: A Framework for Real-Time and Robust Long-term Tracking}, author={Yan, Bin and Zhao, Haojie and Wang, Dong and Lu, Huchuan and Yang, Xiaoyun}, booktitle={IEEE International Conference on Computer Vision (ICCV)}, year={2019} } ``` ## Installation - Create anaconda environment: ```bash conda create -n SPLT python=2.7 conda activate SPLT ``` - Clone the repo and install requirements: ```bash git clone https://github.com/iiau-tracker/SPLT.git cd pip install -r requirements.txt ``` - CUDA and cuDNN: ```bash conda install cudatoolkit=10.0 conda install cudnn=7.6.0 # or CUDA 9.0 + cuDNN 7.1.2 for TensorFlow < 1.13.0 conda install cudatoolkit=9.0 conda install cudnn=7.1.2 ``` ## Models | Model | Size | Google Drive | Baidu | |:-----:|:----:|:-------------:|:---------:| | SiamRPN | 215 MB | [model.ckpt-470277](https://drive.google.com/open?id=1t-rJSHWGgm_9VfqzZaLfhN5XZ8dotXSb) | [Mirror](https://pan.baidu.com/s/1Ft-OorgWQIh7rvWvdGodUA) | | Verifier | 178 MB | [V_resnet50_VID_N-65624](https://drive.google.com/open?id=1jsGkEUinQwvotwWJzsMzXNaHOYkJrPeh) | [Mirror](https://pan.baidu.com/s/1gHAaFAwgX5ROfaucaaGafQ) | | Skimming | 24 MB | [Skim](https://drive.google.com/open?id=1b_Lo3tMtefFsQc7Er1VLqg_RDuig86w2) | [Mirror](https://pan.baidu.com/s/15MxiizQAydPu0K9Nr9GPsg) | - extract `model.ckpt-470277` to `./RPN` - extract `V_resnet50_VID_N-65624` to `./Verifier` - extract `Skim` to `./Skim` ## Demo ```bash # modify 'PROJECT_PATH' in 'demo.py' python demo.py ``` ## Evaluation on VOT start from `RPN_Verifier_Skim_top3.py` - modify `PROJECT_PATH` in `RPN_Verifier_Skim_top3.py` - add `set_global_variable('python', 'env -i ');` to `configuration.m` [raw resluts (vot-toolkt version 6.0.3)](https://github.com/iiau-tracker/SPLT/tree/master/results) ## Train ### Train the Verifier(optional) Download [ResNet50](http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz) model pretrained on IMAGENET.Then put extracted ckpt file in train_Verifier/lib ```bash cd train_Verifier/experiments # modify paths in classify.py python classify.py # modify paths in triplet_pairs.py python triplet_pairs.py # modify paths in train_multi_gpu.py python train_multi_gpu.py ``` ### Train the Skimming(optional) ```bash cd train_Skim # modify paths in classify.py python classify.py # modify paths in skim_data.py python skim_data.py # modify paths in train_skim.py python train_skim.py ```