# KAIR **Repository Path**: lgcgithub/KAIR ## Basic Information - **Project Name**: KAIR - **Description**: Image Restoration Toolbox (PyTorch). Training and testing codes for USRNet, DnCNN, FFDNet, SRMD, DPSR, MSRResNet, ESRGAN, IMDN - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-06-02 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Training and testing codes for DnCNN, FFDNet, SRMD, DPSR, MSRResNet, ESRGAN, IMDN [Kai Zhang](https://cszn.github.io/) *[Computer Vision Lab](https://vision.ee.ethz.ch/the-institute.html), ETH Zurich, Switzerland* _______ **News**: [USRNet (CVPR 2020)](https://github.com/cszn/USRNet) will be added. Training ---------- | Method | Original Link | |---|---| | [main_train_dncnn.py](main_train_dncnn.py) |[https://github.com/cszn/DnCNN](https://github.com/cszn/DnCNN)| | [main_train_fdncnn.py](main_train_fdncnn.py) |[https://github.com/cszn/DnCNN](https://github.com/cszn/DnCNN)| | [main_train_ffdnet.py](main_train_ffdnet.py) | [https://github.com/cszn/FFDNet](https://github.com/cszn/FFDNet)| | [main_train_srmd.py](main_train_srmd.py) | [https://github.com/cszn/SRMD](https://github.com/cszn/SRMD)| | [main_train_dpsr.py](main_train_dpsr.py) | [https://github.com/cszn/DPSR](https://github.com/cszn/DPSR)| | [main_train_msrresnet_psnr.py](main_train_msrresnet_psnr.py) | [https://github.com/xinntao/BasicSR](https://github.com/xinntao/BasicSR)| | [main_train_msrresnet_gan.py](main_train_msrresnet_gan.py) | [https://github.com/xinntao/ESRGAN](https://github.com/xinntao/ESRGAN)| | [main_train_rrdb_psnr.py](main_train_rrdb_psnr.py) | [https://github.com/xinntao/ESRGAN](https://github.com/xinntao/ESRGAN)| | [main_train_imdn.py](main_train_imdn.py) | [https://github.com/Zheng222/IMDN](https://github.com/Zheng222/IMDN)| Network architectures ---------- * [USRNet](https://github.com/cszn/USRNet) * DnCNN * IRCNN denoiser * FFDNet * SRMD * SRResNet, SRGAN, RRDB, ESRGAN * IMDN ----- Testing ---------- |Method | [model_zoo](model_zoo)| |---|---| | [main_test_dncnn.py](main_test_dncnn.py) |```dncnn_15.pth, dncnn_25.pth, dncnn_50.pth, dncnn_gray_blind.pth, dncnn_color_blind.pth, dncnn3.pth```| | [main_test_ircnn_denoiser.py](main_test_ircnn_denoiser.py) | ```ircnn_gray.pth, ircnn_color.pth```| | [main_test_fdncnn.py](main_test_fdncnn.py) | ```fdncnn_gray.pth, fdncnn_color.pth, fdncnn_gray_clip.pth, fdncnn_color_clip.pth```| | [main_test_ffdnet.py](main_test_ffdnet.py) | ```ffdnet_gray.pth, ffdnet_color.pth, ffdnet_gray_clip.pth, ffdnet_color_clip.pth```| | [main_test_srmd.py](main_test_srmd.py) | ```srmdnf_x2.pth, srmdnf_x3.pth, srmdnf_x4.pth, srmd_x2.pth, srmd_x3.pth, srmd_x4.pth```| | | **The above models are converted from MatConvNet.** | | [main_test_dpsr.py](main_test_dpsr.py) | ```dpsr_x2.pth, dpsr_x3.pth, dpsr_x4.pth, dpsr_x4_gan.pth```| | [main_test_msrresnet.py](main_test_msrresnet.py) | ```msrresnet_x4_psnr.pth, msrresnet_x4_gan.pth```| | [main_test_rrdb.py](main_test_rrdb.py) | ```rrdb_x4_psnr.pth, rrdb_x4_esrgan.pth```| | [main_test_imdn.py](main_test_imdn.py) | ```imdn_x4.pth```| [model_zoo](model_zoo) -------- - download link [https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D](https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D) [trainsets](trainsets) ---------- - [https://github.com/xinntao/BasicSR/wiki/Prepare-datasets-in-LMDB-format](https://github.com/xinntao/BasicSR/wiki/Prepare-datasets-in-LMDB-format) - [train400](https://github.com/cszn/DnCNN/tree/master/TrainingCodes/DnCNN_TrainingCodes_v1.0/data) - [DIV2K](https://data.vision.ee.ethz.ch/cvl/DIV2K/) - [Flickr2K](https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar) - optional: use [split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=512, p_overlap=96, p_max=800)](https://github.com/cszn/KAIR/blob/3ee0bf3e07b90ec0b7302d97ee2adb780617e637/utils/utils_image.py#L123) to get ```trainsets/trainH``` with small images for fast data loading [testsets](testsets) ----------- - [https://github.com/xinntao/BasicSR/wiki/Prepare-datasets-in-LMDB-format](https://github.com/xinntao/BasicSR/wiki/Prepare-datasets-in-LMDB-format) - [set12](https://github.com/cszn/FFDNet/tree/master/testsets) - [bsd68](https://github.com/cszn/FFDNet/tree/master/testsets) - [cbsd68](https://github.com/cszn/FFDNet/tree/master/testsets) - [kodak24](https://github.com/cszn/FFDNet/tree/master/testsets) - [srbsd68](https://github.com/cszn/DPSR/tree/master/testsets/BSD68/GT) - set5 - set14 - cbsd100 - urban100 - manga109 References ---------- ``` @inproceedings{zhang2020deep, % USRNet title={Deep unfolding network for image super-resolution}, author={Zhang, Kai and Van Gool, Luc and Timofte, Radu}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={0--0}, year={2020} } @article{zhang2017beyond, % DnCNN title={Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising}, author={Zhang, Kai and Zuo, Wangmeng and Chen, Yunjin and Meng, Deyu and Zhang, Lei}, journal={IEEE Transactions on Image Processing}, volume={26}, number={7}, pages={3142--3155}, year={2017} } @inproceedings{zhang2017learning, % IRCNN title={Learning deep CNN denoiser prior for image restoration}, author={Zhang, Kai and Zuo, Wangmeng and Gu, Shuhang and Zhang, Lei}, booktitle={IEEE conference on computer vision and pattern recognition}, pages={3929--3938}, year={2017} } @article{zhang2018ffdnet, % FFDNet, FDnCNN title={FFDNet: Toward a fast and flexible solution for CNN-based image denoising}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, journal={IEEE Transactions on Image Processing}, volume={27}, number={9}, pages={4608--4622}, year={2018} } @inproceedings{zhang2018learning, % SRMD title={Learning a single convolutional super-resolution network for multiple degradations}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={3262--3271}, year={2018} } @inproceedings{zhang2019deep, % DPSR title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={1671--1681}, year={2019} } @InProceedings{wang2018esrgan, % ESRGAN, MSRResNet author = {Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Loy, Chen Change}, title = {ESRGAN: Enhanced super-resolution generative adversarial networks}, booktitle = {The European Conference on Computer Vision Workshops (ECCVW)}, month = {September}, year = {2018} } @inproceedings{hui2019lightweight, % IMDN title={Lightweight Image Super-Resolution with Information Multi-distillation Network}, author={Hui, Zheng and Gao, Xinbo and Yang, Yunchu and Wang, Xiumei}, booktitle={Proceedings of the 27th ACM International Conference on Multimedia (ACM MM)}, pages={2024--2032}, year={2019} } @inproceedings{zhang2019aim, % IMDN title={AIM 2019 Challenge on Constrained Super-Resolution: Methods and Results}, author={Kai Zhang and Shuhang Gu and Radu Timofte and others}, booktitle={IEEE International Conference on Computer Vision Workshops}, year={2019} } ```