# SRDenseNet-pytorch **Repository Path**: liao_wenrui/SRDenseNet-pytorch ## Basic Information - **Project Name**: SRDenseNet-pytorch - **Description**: SRDenseNet-pytorch(ICCV_2017) - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-06-14 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICCV_2017/papers/Tong_Image_Super-Resolution_Using_ICCV_2017_paper.pdf) ![image](https://i.imgur.com/ZlNl6Zu.png) ## Usage ### Training ``` usage: main.py [-h] [--batchSize BATCHSIZE] [--nEpochs NEPOCHS] [--lr LR] [--step STEP] [--cuda] [--resume RESUME] [--start-epoch START_EPOCH] [--threads THREADS] [--pretrained PRETRAINED] Pytorch SRDenseNet train optional arguments: -h, --help show this help message and exit --batchSize BATCHSIZE training batch size --nEpochs NEPOCHS number of epochs to train for --lr LR Learning Rate. Default=1e-4 --step STEP Sets the learning rate to the initial LR decayed by 10 every n epochs, Default: n=30 --cuda Use cuda? --resume RESUME Path to checkpoint (default: none) --start-epoch START_EPOCH Manual epoch number (useful on restarts) --threads THREADS Number of threads for data loader to use, Default: 1 --pretrained PRETRAINED path to pretrained model (default: none) ``` ### Test ``` usage: test.py [-h] [--cuda] [--model MODEL] [--imageset IMAGESET] [--scale SCALE] Pytorch SRDenseNet Test optional arguments: -h, --help show this help message and exit --cuda use cuda? --model MODEL model path --imageset IMAGESET imageset name --scale SCALE scale factor, Default: 4 ``` ### Prepare Training dataset The training data is generated with Matlab Bicubic Interplotation, please refer [Code for Data Generation](https://github.com/wxywhu/SRDenseNet-pytorch/tree/master/data) for creating training files. ### Prepare Test dataset The test imageset is generated with Matlab Bicubic Interplotation, please refer [Code for test](https://github.com/wxywhu/SRDenseNet-pytorch/tree/master/TestSet) for creating test imageset. ### Performance We provide a pretrained .[SRDenseNet x4 model](https://pan.baidu.com/s/1kkuS4sEDe-KyLBKpkKzXXg) trained on DIV2K images from [DIV2K_train_HR] (http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip).While I use the SR_DenseNet to train this model, so the performance is test based on this code. Non-overlapping sub-images with a size of 96 × 96 were cropped in the HR space. Other settings is the same as the original paper - Performance in PSNR on Set5, Set14, and BSD100 | DataSet/Method | Paper | PyTorch| | ------------- |:----------:|:----------:| | Set5 | 32.02/0.893 | **31.57/0.883** | | Set14 | 28.50/0.778 | **28.11/0.771** | | BSD100 | 27.53/0.733 | **27.32/0.729** |