# MLFF-DTA **Repository Path**: linshen123/mlff-dta ## Basic Information - **Project Name**: MLFF-DTA - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-08-14 - **Last Updated**: 2024-08-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MLFF-DTA: A Multi-Level Feature Fusion Method for Predicting Drug-Target Binding Affinity ## Model Architecture ![image-20240813200325041](./image/image-20240813200325041.png) ## Requirements - The most important python packages are: - einops==0.7.0 - matplotlib==3.7.2 - networkx==3.1 - numpy==1.25.2 - pandas==2.0.3 - prefetch_generator==1.0.3 - rdkit==2023.3.2 - scikit_learn==1.3.0 - torch==2.0.0 - torch_geometric==2.4.0 - tqdm==4.66.1 For using our model more conveniently, we provide the requirements file to install environment directly. ```python pip install requirements .txt ``` ## Dataset We use three datasets, i.e. DB_KD, DB_EC50 and Davis datasets. The DB_KD and DB_EC50 are constructed in our research. The Davis dataset come from [TEFDTA]([lizongquan01/TEFDTA (github.com)](https://github.com/lizongquan01/TEFDTA)) (TEFDTA: a transformer encoder and fingerprint representation combined prediction method for bonded and non-bonded drug–target affinities). ## Example usage 1. Preparing Training and Test Data ```python python data_prepare.py Kd ``` ``` python data_generalizationSet_prepare.py Kd ``` 2. Training the model ```python python main.py Kd ``` 3. Testing the model ```python python test_model.py Kd ``` 4. Evaluating the generalization of the model ```python python test_model_generalization.py Kd ``` ## Contact If you have any questions, please feel free to contact Jiao Wang (Email: wangjiao@mail.imu.edu.cn)