# Keras_RCN **Repository Path**: linzhchen/Keras_RCN ## Basic Information - **Project Name**: Keras_RCN - **Description**: base on tensorflow2.3 - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-08-18 - **Last Updated**: 2021-08-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Keras - FCN ## Part 1. Introduction Fully Convolutional Networks is the first model to apply Convolutional Neural Network to semantic segmentation. It used common backbone like VGG, ResNet as encoder, and the decoders are upsampled layer by layer to original image size. ## Part 2. Quick Start 1. Pull this repository. ```shell git clone https://github.com/verages/Keras_RCN.git ``` 2. You need to install some dependency package. ```shell cd FCN-keras pip installl -r requirements.txt ``` 3. Download the *[VOC](https://www.kaggle.com/huanghanchina/pascal-voc-2012)* dataset(VOC [SegmetationClassAug](http://home.bharathh.info/pubs/codes/SBD/download.html) if you need) . 4. Getting FCN weights. ```shell wget https://github.com/Runist/FCN-keras/releases/download/v0.2/fcn_weights.h5 ``` 4. Run **predict.py**, you'll see the result of Fully Convolutional Networks. ```shell python predict.py ``` ## Part 3. Train your own dataset 1. You should rewrite your data pipeline, *Dateset* where in *dataset.py* is the base class, such as *VOCdataset.py*. ```python class VOCDataset(Dataset): def __init__(self, annotation_path, batch_size=4, target_size=(320, 320), num_classes=21, aug=False): super().__init__(target_size, num_classes) self.batch_size = batch_size self.target_size = target_size self.num_classes = num_classes self.annotation_path = annotation_path self.aug = aug self.read_voc_annotation() self.set_image_info() ``` 2. Start training. ```shell python train.py ``` 3. Running *evaluate.py* to get mean iou and pixel accuracy. ```shell python evaluate.py ``` ## Part 4. Paper and other implement - [Fully Convolutional Networks for Semantic Segmentation](https://arxiv.org/abs/1411.4038) - paper with code: [shelhamer](https://github.com/shelhamer)/**[fcn.berkeleyvision.org](https://github.com/shelhamer/fcn.berkeleyvision.org)** - [aurora95/*Keras*-*FCN*](https://github.com/aurora95/Keras-FCN) - [divamgupta/image-segmentation-*keras*](https://github.com/divamgupta/image-segmentation-keras)