# redenv **Repository Path**: liqin1998/redenv ## Basic Information - **Project Name**: redenv - **Description**: 交大校友交流学习群红包自动统计 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-08-16 - **Last Updated**: 2020-12-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## 本项目实现交大校友群微信红包自动统计 ## 基于github项目chineocr ## 环境部署 wget https://repo.continuum.io/archive/Anaconda3-5.2.0-Linux-x86_64.sh bash ./Anaconda3-5.2.0-Linux-x86_64.sh -b -p /opt/conda/ 修改~/.bashrc,在最后一行添加 export PATH="/opt/conda/bin:$PATH" git clone https://github.com/chineseocr/chineseocr.git cd chineseocr/ git clone https://github.com/pjreddie/darknet.git conda create -n chineseocr python=3.6 pip scipy numpy jupyter ipython git submodule init && git submodule update pip install easydict opencv-contrib-python==4.0.0.21 Cython h5py lmdb mahotas pandas requests bs4 matplotlib lxml -i https://pypi.tuna.tsinghua.edu.cn/simple/ pip install -U pillow -i https://pypi.tuna.tsinghua.edu.cn/simple/ pip install web.py==0.40.dev0 pip install keras==2.1.5 tensorflow==1.8 pushd text/detector/utils && sh make-for-cpu.sh && popd conda install pytorch torchvision -c pytorch #apt-get install -y python-qt4 #pip install opencv-python pip install xlrd xlsxwriter pip install pyecharts For GPU: pip install tensorflow-gpu==1.8 bash /root/cuda_10.0.130_410.48_linux.run --silent --toolkit export PATH="/usr/local/cuda-10.0/bin:$PATH" #~/.bashrc dpkg -i /root/libcudnn7_7.5.0.56-1+cuda10.0_amd64.deb dpkg -i /root/libcudnn7-dev_7.5.0.56-1+cuda10.0_amd64.deb 修改darknet/python/darknet.py第48行 lib = CDLL("/root/chineseocr/darknet/libdarknet.so", RTLD_GLOBAL) #vim darknet/python/darknet.py 修改darknet/Makefile前2行 GPU=1 CUDNN=1 OPENCV=0 OPENMP=0 pushd darknet/ && make && popd ## 下载模型文件 模型文件地址: [baidu pan](https://pan.baidu.com/s/1gTW9gwJR6hlwTuyB6nCkzQ) 复制文件夹中的所有文件到models目录 ## 生成统计 将当日红包截屏拷贝到sjtu相应日期(20190615)的目录下; 运行python redenv.py /root/chineseocr/sjtu/20190615; 复制生成的结果文件(在/root/chineseocr/sjtu目录下)。 ## DOCKER docker build -t redenv . docker run -p 5900:5900 -v /root/redenv/sjtu:sjtu -it redenv /bin/bash