# yolox_sort_monitor **Repository Path**: lishan666/yolox_sort_monitor ## Basic Information - **Project Name**: yolox_sort_monitor - **Description**: 基于yolox-sort的交通监测项目,开发中~ - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-12-08 - **Last Updated**: 2024-10-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # yolox_sort_monitor #### 介绍 开发基于机器视觉技术的交叉口交通监测项目,监测参数有车流量、车速、排队长度。监控视频由三脚架稳定夹持的手机拍摄,拍摄车流为西安市雁塔区小寨交叉口的长安中路的北->南方向。项目使用核心技术为Yolox目标检测、Deepsort多目标跟踪 项目正开发中,等待完善~ #### 软件架构 1. 操作系统:Windows11x64 2. Pytorch:1.80+cu111 3. Python:3.8.12 4. cuda:11.1 5. cuDNN:8.1.1 6. opencv-python:4.5.4.58 #### 安装教程 1. git clone yolox_sort_monito ```shell git clone https://gitee.com/lishan666/yolox_sort_monitor.git cd yolox_sort_monito ``` 2. create and activate conda environment 前提:已经安装anaconda ```shell conda create -n yolox-sort python=3.8 -y conda activate yolox-sort ``` 3. Install requirements ```shell pip3 install -U pip pip3 install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install -v -e . # or python3 setup.py develop ``` 4. Install [pycocotools](https://github.com/cocodataset/cocoapi) ```shell pip3 install cython pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI' ``` 5. Install pytorch 在pytorch官网下载torch、torchaudio、torchvision文件:https://download.pytorch.org/whl/torch_stable.html 注意:torch的版本与cuda、python和操作系统的对应关系 use pip install *whell example: ```shell pip install torch-1.8.0+cu111-cp38-cp38-win_amd64.whl pip install torchaudio-0.8.0-cp38-none-win_amd64.whl pip install torchvision-0.9.0+cu111-cp38-cp38-win_amd64.whl ``` 6. #### 使用说明 1. yolox权重文件下载链接: https://pan.baidu.com/s/16_XYkL_Rbiz7Ah9Vr2GZqQ 提取码:0c9s 2. 测试视频文件下载链接: 链接:https://pan.baidu.com/s/1w8ZmuwvvuPDBNemwt6S_gA 提取码:wxn5 3. 运行demo ```python python tools/demo.py video -n yolox-s -c /path/to/your/yolox_s.pth --path /path/to/your/video --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu] ``` ```python python tools/detector.py video -n yolox-nano -c weights/yolox_nano.pth --path assets/intersection.mp4 --conf 0.3 --nms 0.65 --tsize 640 --save_result --device gpu ``` 4. xxxx #### Reference https://github.com/Megvii-BaseDetection/YOLOX https://github.com/nwojke/deep_sort