# deep-face-recognition **Repository Path**: liuheng0022/deep-face-recognition ## Basic Information - **Project Name**: deep-face-recognition - **Description**: One-shot Learning and deep face recognition notebooks and workshop materials - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-02-19 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Deep Face Recognition using Tensorflow workshop material (Thursday, August 30, 2018 ) - One-shot & low-shot learning - Siamese network - What is metric learning & Face embedding? - Face Verification and Identification Challanges: Lfw, Megaface - Facenet Triplet Loss, Center Loss, Sphere Face, Amsoftmax, Arcface - How align a face with MTCNN Landmarks ## Slides: [Slideshare](https://www.slideshare.net/Alirezaakhavanpour/deep-face-recognition-oneshot-learning) | download [pptx](https://github.com/Alireza-Akhavan/deep-face-recognition/blob/master/Slides/faceRecognition-OneShotLlearning.pptx) ## video capture: [part 1](https://www.aparat.com/v/6Rnxl) | [part 2](https://www.aparat.com/v/IHlF7) ## Jupyter notebooks: [face Verification with face embedding](https://nbviewer.jupyter.org/github/Alireza-Akhavan/deep-face-recognition/blob/master/01_Intro2FaceRecognition.ipynb) [face detection and 5 point landmarks with MTCNN](https://nbviewer.jupyter.org/github/Alireza-Akhavan/deep-face-recognition/blob/master/02_FaceDetection%26Alignment-MTCNN.ipynb) [face Identification & Recognition](https://nbviewer.jupyter.org/github/Alireza-Akhavan/deep-face-recognition/blob/master/03_FaceRecognition-verification%26Identification.ipynb) [Face alignment with 5 point landmarks](https://nbviewer.jupyter.org/github/Alireza-Akhavan/deep-face-recognition/blob/master/04_MTCNN-wrap-with-landmarks.ipynb) ## Important link ### facenet pretrained model (Tensorflow) [davidsandberg/facenet/](https://github.com/davidsandberg/facenet/) ### Sphereface or Angular Softmax (Caffe) [wy1iu/sphereface](https://github.com/wy1iu/sphereface) ### ArcFace (MXNet) [deepinsight/insightface](https://github.com/deepinsight/insightface) ### AMSoftmax (Caffe) [happynear/AMSoftmax](https://github.com/happynear/AMSoftmax) ### Iranian Face Dataset [iran-celeb.ir](http://iran-celeb.ir) ____________________ # Datasets 1. [CASIA WebFace Database](http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html). 10,575 subjects and 494,414 images 2. [Labeled Faces in the Wild](http://vis-www.cs.umass.edu/lfw/).13,000 images and 5749 subjects 3. [Large-scale CelebFaces Attributes (CelebA) Dataset](http://mmlab.ie.cuhk.edu.hk/projects/) 202,599 images and 10,177 subjects. 5 landmark locations, 40 binary attributes. 4. [MSRA-CFW](http://research.microsoft.com/en-us/projects/msra-cfw/). 202,792 images and 1,583 subjects. 5. [MegaFace Dataset](http://megaface.cs.washington.edu/) 1 Million Faces for Recognition at Scale 690,572 unique people 6. [FaceScrub](http://vintage.winklerbros.net/facescrub.html). A Dataset With Over 100,000 Face Images of 530 People. 7. [FDDB](http://vis-www.cs.umass.edu/fddb/).Face Detection and Data Set Benchmark. 5k images. 8. [AFLW](https://lrs.icg.tugraz.at/research/aflw/).Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization. 25k images. 9. [AFW](http://www.ics.uci.edu/~xzhu/face/). Annotated Faces in the Wild. ~1k images. 10.[3D Mask Attack Dataset](https://www.idiap.ch/dataset/3dmad). 76500 frames of 17 persons using Kinect RGBD with eye positions (Sebastien Marcel) 11. [Audio-visual database for face and speaker recognition](https://www.idiap.ch/dataset/mobio).Mobile Biometry MOBIO http://www.mobioproject.org/ 12. [BANCA face and voice database](http://www.ee.surrey.ac.uk/CVSSP/banca/). Univ of Surrey 13. [Binghampton Univ 3D static and dynamic facial expression database](http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html). (Lijun Yin, Peter Gerhardstein and teammates) 14. [The BioID Face Database](https://www.bioid.com/About/BioID-Face-Database). BioID group 15. [Biwi 3D Audiovisual Corpus of Affective Communication](http://www.vision.ee.ethz.ch/datasets/b3dac2.en.html). 1000 high quality, dynamic 3D scans of faces, recorded while pronouncing a set of English sentences. 16. [Cohn-Kanade AU-Coded Expression Database](http://www.pitt.edu/~emotion/ck-spread.htm). 500+ expression sequences of 100+ subjects, coded by activated Action Units (Affect Analysis Group, Univ. of Pittsburgh. 17. [CMU/MIT Frontal Faces ](http://cbcl.mit.edu/software-datasets/FaceData2.html). Training set: 2,429 faces, 4,548 non-faces; Test set: 472 faces, 23,573 non-faces. 18. [AT&T Database of Faces](http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html) 400 faces of 40 people (10 images per people) # Other Face Dataset ## Face Detection Dataset ### FDDB paper: http://vis-www.cs.umass.edu/fddb/fddb.pdf dataset: http://vis-www.cs.umass.edu/fddb/index.html#download ### Wider Face extreme scale paper: https://arxiv.org/pdf/1511.06523.pdf dataset: http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/index.html ### MAFA occlusion paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Ge_Detecting_Masked_Faces_CVPR_2017_paper.pdf dataset: http://www.escience.cn/people/geshiming/mafa.html ### 4k face dataset hight resolution paper: https://arxiv.org/pdf/1804.06559.pdf ### Unconstrained Face Detection Dataset (UFDD) different weather paper: https://arxiv.org/abs/1804.10275 dataset: https://github.com/hezhangsprinter/UFDD ### wildest faces paper: https://arxiv.org/pdf/1805.07566.pdf ### Multi-Attribute Labelled Faces (MALF) paper: http://www.cbsr.ia.ac.cn/faceevaluation/faceevaluation15.pdf dataset: http://www.cbsr.ia.ac.cn/faceevaluation/#reference ### IJB-A Dataset paper: https://zhaoj9014.github.io/pub/IJBA_1N_report.pdf dataset: https://www.nist.gov/itl/iad/image-group/ijb-dataset-request-form # Age Estimation Dataset ### Adience dataset dataset: https://talhassner.github.io/home/projects/Adience/Adience-data.html statistic: Total number of images: 26,580 Total number of subjects: 2,284 Number of age groups: 8 (0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60-) Gender labels: Yes In the wild: Yes Subject labels: Yes ### UTK-Face dataset: https://susanqq.github.io/UTKFace/ ### APPA-REAL (real and apparent age) paper: http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w48/Clapes_From_Apparent_to_CVPR_2018_paper.pdf dataset: http://chalearnlap.cvc.uab.es/dataset/26/description/ # Face Landmark Detection Dataset ### 300W paper: https://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf ### COFW occluded to different degrees paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2013/12/BurgosArtizzuICCV13rcpr.pdf ### AFLW faces with large head pose up to 120◦ for yaw and 90◦ for pitch and roll. paper: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.2988&rep=rep1&type=pdf dataset: https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/ ### WFLW from wider face dataset paper: https://arxiv.org/pdf/1805.10483.pdf dataset: https://wywu.github.io/projects/LAB/WFLW.html # papers: [Deep Face Recognition (2015)](http://cis.csuohio.edu/~sschung/CIS660/DeepFaceRecognition_parkhi15.pdf) [FaceNet: A Unified Embedding for Face Recognition and Clustering (2015)](https://arxiv.org/abs/1503.03832) [A Discriminative Feature Learning Approach for Deep Face Recognition (2016)](https://link.springer.com/chapter/10.1007/978-3-319-46478-7_31) [SphereFace: Deep Hypersphere Embedding for Face Recognition (2018)](https://arxiv.org/abs/1704.08063) [Additive Margin Softmax for Face Verification (2018)](https://arxiv.org/abs/1801.05599) [Ring loss: Convex Feature Normalization for Face Recognition(2018)](https://arxiv.org/abs/1803.00130) [ArcFace: Additive Angular Margin Loss for Deep Face Recognition (2019)](https://arxiv.org/abs/1801.07698) [Deep Face Recognition: A Survey (2019)](https://arxiv.org/pdf/1804.06655) #### source: https://github.com/jian667/face-dataset https://github.com/jian667/Face-Resources/