# tensorflow-MNIST-cGAN-cDCGAN **Repository Path**: liuheng0022/tensorflow-MNIST-cGAN-cDCGAN ## Basic Information - **Project Name**: tensorflow-MNIST-cGAN-cDCGAN - **Description**: Tensorflow implementation of conditional Generative Adversarial Networks (cGAN) and conditional Deep Convolutional Adversarial Networks (cDCGAN) for MANIST dataset. - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 1 - **Created**: 2019-08-17 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # tensorflow-MNIST-cGAN-cDCGAN Tensorflow implementation of conditional Generative Adversarial Networks (cGAN) [1] and conditional Deep Convolutional Generative Adversarial Networks (cDCGAN) for MANIST [2] dataset. * you can download - MNIST dataset: http://yann.lecun.com/exdb/mnist/ ## Implementation details * cGAN ![GAN](tensorflow_cGAN.png) ## Resutls * Generate using fixed noise (fixed_z_)
cGAN cDCGAN
* MNIST vs Generated images
MNIST cGAN after 100 epochs cDCGAN after 30 epochs
* Training loss
cGAN cDCGAN
* Learning time * MNIST cGAN - Avg. per epoch: 3.21 sec; Total 100 epochs: 1800.37 sec * MNIST cDCGAN - Avg. per epoch: 53.07 sec; Total 30 epochs: 2072.29 sec ## Development Environment * Windows 7 * GTX1080 ti * cuda 8.0 * Python 3.5.3 * tensorflow-gpu 1.2.1 * numpy 1.13.1 * matplotlib 2.0.2 * imageio 2.2.0 ## Reference [1] Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014). (Full paper: https://arxiv.org/pdf/1411.1784.pdf) [2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.