# MVTecAD **Repository Path**: liujiyuan13/MVTecAD ## Basic Information - **Project Name**: MVTecAD - **Description**: A Pytorch loader for MVTecAD dataset. - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-25 - **Last Updated**: 2021-12-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as `torchvision.datasets.CIFAR10`. Therefore, there is no need to worry about the consistence of your code !!! ## Showcase ``` from torch.utils.data import DataLoader from torchvision import transforms from mvtec_ad import MVTecAD def _convert_label(x): ''' convert anomaly label. 0: normal; 1: anomaly. :param x (int): class label :return: 0 or 1 ''' return 0 if x == 0 else 1 if __name__ == '__main__': # define transforms transform = transforms.Compose([transforms.Resize((300, 300)), transforms.ToTensor()]) target_transform = transforms.Lambda(_convert_label) # load data mvtec = MVTecAD('data', subset_name='bottle', train=True, transform=transform, mask_transform=transform, target_transform=target_transform, download=True) # feed to data loader data_loader = DataLoader(mvtec, batch_size=2, shuffle=True, num_workers=8, pin_memory=True, drop_last=True) # obtain in batch for idx, (image, mask, target) in enumerate(data_loader): print(idx, target) ``` ## Licence This repository is under [GPL V3](https://github.com/liujiyuan13/MAE-code/blob/main/LICENSE). ## About Homepage: Email: