# DenseUAV **Repository Path**: liukejia/DenseUAV ## Basic Information - **Project Name**: DenseUAV - **Description**: DenseUAV,Dai, Ming, et al. "Vision-based uav localization system in denial environments." CoRR (2022). - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: Dmmm1997-patch-1 - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-06-13 - **Last Updated**: 2025-06-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments

This repository contains code and dataset for the paper titled [Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments](https://arxiv.org/abs/2201.09201). In this paper, we propose a method for accurately self-positioning unmanned aerial vehicles (UAVs) in challenging low-altitude urban environments using vision-based techniques. We provide the DenseUAV dataset and a Baseline model implementation to facilitate research in this task. Thank you for your kind attention. ![](https://github.com/Dmmm1997/DenseUAV/blob/main/docs/images/data.jpg) ![](https://github.com/Dmmm1997/DenseUAV/blob/main/docs/images/framework.jpg) ![](https://github.com/Dmmm1997/DenseUAV/blob/main/docs/images/model.png) ## News - **`2023/12/18`**: Our paper is accepted by IEEE Trans on Image Process. - **`2023/8/14`**: Our dataset and code are released. ## Table of contents - [Table of contents](#table-of-contents) - [About Dataset](#about-dataset) - [Prerequisites](#prerequisites) - [Installation](#installation) - [Dataset \& Preparation](#dataset--preparation) - [Train \& Evaluation](#train--evaluation) - [Training and Testing](#training-and-testing) - [Evaluation](#evaluation) - [Supported Methods](#supported-methods) - [License](#license) - [Citation](#citation) - [Related Work](#related-work) ## About Dataset The dataset split is as follows: | Subset | UAV-view | Satellite-view | Classes | universities | | -------- | ----- | ---- | ---- | ---- | | Training | 6,768 | 13,536 | 2,256 | 10 | | Query | 2,331 | 4,662 | 777 | 4 | | Gallery | 9099 | 18198 | 3033 | 14 | More detailed file structure: ``` ├── DenseUAV/ │ ├── Dense_GPS_ALL.txt /* format as: path latitude longitude height │ ├── Dense_GPS_test.txt │ ├── Dense_GPS_train.txt │ ├── train/ │ ├── drone/ /* drone-view training images │ ├── 000001 │ ├── H100.JPG │ ├── H90.JPG │ ├── H80.JPG | ... │ ├── satellite/ /* satellite-view training images │ ├── 000001 │ ├── H100_old.tif │ ├── H90_old.tif │ ├── H80_old.tif │ ├── H100.tif │ ├── H90.tif │ ├── H80.tif | ... │ ├── test/ │ ├── query_drone/ /* UAV-view testing images │ ├── query_satellite/ /* satellite-view testing images ``` ## Prerequisites - Python 3.7+ - GPU Memory >= 8G - Numpy 1.21.2 - Pytorch 1.10.0+cu113 - Torchvision 0.11.1+cu113 ## Installation It is best to use cuda version 11.3 and pytorch version 1.10.0. You can download the corresponding version from this [website](https://download.pytorch.org/whl/torch_stable.html) and install it through `pip install`. Then you can execute the following command to install all dependencies. ``` pip install -r requirments.txt ``` ## Dataset & Preparation Download DenseUAV upon request. You may use the request [Template](https://github.com/Dmmm1997/DenseUAV//blob/main/docs/Request.md). ## Train & Evaluation ### Training and Testing You could execute the following command to implement the entire process of training and testing. ``` bash train_test_local.sh ``` The setting of parameters in **train_test_local.sh** can refer to [Get Started](https://github.com/Dmmm1997/DenseUAV//blob/main/docs/Get_started). ### Evaluation The following commands are required to evaluate Recall and SDM separately. ``` cd checkpoints/ python test.py --name --test_dir --gpu_ids 0 --num_worker 4 ``` the `` is the dir name in your training setting, you can find in the `checkpoints/`. **For Recall** ``` python evaluate_gpu.py ``` **For SDM** ``` python evaluateDistance.py --root_dir ``` ## Supported Methods | Augment | Backbone | Head | Loss | | -------- | -------- | ------ | ------ | | Random Rotate | ResNet | MaxPool | CrossEntropy Loss. | | Random Affine | EfficientNet | AvgPool | Focal Loss | | Random Brightness | ConvNext | MaxAvgPool | Triplet Loss | | Random Erasing | DeiT | GlobalPool | Hard-Mining Triplet Loss | | | PvT | GemPool | Same-Domain Triplet Loss | | | SwinTransformer| LPN | Soft-Weighted Triplet Loss | | | ViT | FSRA | KL Loss | ## License This project is licensed under the [Apache 2.0 license](https://github.com/Dmmm1997/DenseUAV//blob/main/LICENSE). ## Citation The following paper uses and reports the result of the baseline model. You may cite it in your paper. ```bibtex @article{dai2022vision, title={Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments}, author={Dai, Ming and Zheng, Enhui and Feng, Zhenhua and Qi, Lei and Zhuang, Jiedong and Yang, Wankou}, journal={arXiv}, year={2022} } @ARTICLE{DenseUAV, author={Dai, Ming and Zheng, Enhui and Feng, Zhenhua and Qi, Lei and Zhuang, Jiedong and Yang, Wankou}, journal={IEEE Transactions on Image Processing}, title={Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments}, year={2023}, volume={}, number={}, pages={1-1}, doi={10.1109/TIP.2023.3346279}} ``` ## Related Work - University-1652 [https://github.com/layumi/University1652-Baseline](https://github.com/layumi/University1652-Baseline) - FSRA [https://github.com/Dmmm1997/FSRA](https://github.com/Dmmm1997/FSRA)