# smart_classroom **Repository Path**: liuswot/smart_classroom ## Basic Information - **Project Name**: smart_classroom - **Description**: 课堂专注度及考试作弊系统、课堂动态点名。情绪识别、表情识别、姿态识别和人脸识别结合 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 10 - **Forks**: 1 - **Created**: 2021-08-04 - **Last Updated**: 2025-06-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 智慧教室 课堂专注度及考试作弊系统、课堂动态点名,情绪识别、表情识别和人脸识别结合 相关项目 - [PyQt Demo](https://github.com/hongyaohongyao/smart_classroom_demo) - [Java 版本](https://github.com/hongyaohongyao/SmartClassroomJava) ## 课堂专注度分析 课堂专注度+表情识别 ![正面专注度](.img/README/正面专注度.png) ## 作弊检测 #### 关键点计算方法 转头(probe)+低头(peep)+传递物品(passing) ![正面作弊动作](.img/README/正面作弊动作.png) 侧面的传递物品识别 ![侧面作弊动作](.img/README/侧面作弊动作.png) #### 逻辑回归关键点 ![image-20210620223428871](.img/README/image-20210620223428871.png) ## 下载权重 ### 1. [Halpe dataset](https://github.com/Fang-Haoshu/Halpe-FullBody) (136 keypoints) | Model | Backbone | Detector | Input Size | AP | Speed | Download | Config | Training Log | | ------------------------------------------------------------ | -------- | -------- | ---------- | ---- | ----------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | [Fast Pose](https://github.com/MVIG-SJTU/AlphaPose/blob/master/configs/halpe_136/resnet/256x192_res50_lr1e-3_1x.yaml) | ResNet50 | YOLOv3 | 256x192 | 69.0 | 3.54 iter/s | [Google](https://drive.google.com/file/d/17vnGsMDbG4rf50kyj586BVJsiAspQv5v/view?usp=sharing) [Baidu](https://pan.baidu.com/s/1--9DsFjTyQrTMwsMjY7FGg) | [cfg](https://github.com/MVIG-SJTU/AlphaPose/blob/master/configs/halpe_136/resnet/256x192_res50_lr1e-3_2x-regression.yaml) | [log](https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs) | - 放到detection_system/checkpoints ### 2. Human-ReID based tracking (Recommended) Currently the best performance tracking model. Paper coming soon. #### Getting started Download [human reid model](https://mega.nz/#!YTZFnSJY!wlbo_5oa2TpDAGyWCTKTX1hh4d6DvJhh_RUA2z6i_so) and place it into `AlphaPose/trackers/weights/`. Then simply run alphapose with additional flag `--pose_track` You can try different person reid model by modifing `cfg.arch` and `cfg.loadmodel` in `./trackers/tracker_cfg.py`. If you want to train your own reid model, please refer to this [project](https://github.com/KaiyangZhou/deep-person-reid) ### 3. Yolo Detector Download the object detection model manually: **yolov3-spp.weights**([Google Drive](https://drive.google.com/open?id=1D47msNOOiJKvPOXlnpyzdKA3k6E97NTC) | [Baidu pan](https://pan.baidu.com/s/1Zb2REEIk8tcahDa8KacPNA)). Place it into `detector/yolo/data`. ### 4. face boxes 预训练权重 [google drive](https://drive.google.com/file/d/1tRVwOlu0QtjvADQ2H7vqrRwsWEmaqioI) - 放到face_recog/weights文件夹下 ### 5. 其他 [百度云](https://pan.baidu.com/s/1X6TR2jiqdqg3Zi8wl7mkxw) 提取码:rwtl **人脸识别**:dlib_face_recognition_resnet_model_v1.dat - detection_system/face_recog/weights **人脸对齐**:shape_predictor_68_face_landmarks.dat - detection_system/face_recog/weights **作弊动作分类器**:cheating_detector_rfc_kp.pkl - detection_system/weights ## 使用 ### 运行setup.py安装必要内容 ```shell python setup.py build develop ``` ### 运行demo_inference.py 将detection_system设置为source root ![image-20210514153925536](.img/README/image-20210514153925536.png) 使用摄像头运行程序 ``` python demo_inference.py --vis --webcam 0 ``` # 参考项目 - [人体姿态估计 AlphaPose](https://github.com/MVIG-SJTU/AlphaPose) - [头部姿态估计 head-pose-estimation](https://github.com/yinguobing/head-pose-estimation) - [人脸检测 faceboxes](https://github.com/zisianw/FaceBoxes.PyTorch) - [静默人脸识别 Silent-Face-Anti-Spoofing](https://github.com/minivision-ai/Silent-Face-Anti-Spoofing) # 相关信息