# musica **Repository Path**: liuxch5/musica ## Basic Information - **Project Name**: musica - **Description**: MuSiCa - Mutational Signatures in Cancer - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-08 - **Last Updated**: 2021-02-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MuSiCa - Mutational Signatures in Cancer
MuSiCa (Mutational Signatures in Cancer) is a shiny-based web application aimed to visualize the somatic mutational profile of a series of provided samples (different formats are allowed) and to extract the contribution of the reported mutational signatures ([Alexandrov L.B. et al., Nature (2013)](http://dx.doi.org/10.1038/nature12477), [Catalogue Of Somatic Mutations In Cancer, COSMIC (2017)](http://cancer.sanger.ac.uk/cosmic/signatures)) on their variation profile. It is mainly based on the MutationalPatterns R package ([Blokzijl et al., Genome Medicine (2018)](https://doi.org/10.1186/s13073-018-0539-0)). Please give credit and cite MuSiCa app when you use it for your genomic analysis ([Díaz-Gay et al., BMC Bioinformatics (2018)](https://doi.org/10.1186/s12859-018-2234-y)). ## Running the app There are many ways to download and run Mutational Signatures ShinyApp: First check the dependencies (you only need to do this once): ```R if(!requireNamespace("BiocManager", quietly = TRUE)) {install.packages("BiocManager")} if(!require(MutationalPatterns)) {BiocManager::install("MutationalPatterns")} if(!require(VariantAnnotation)) {BiocManager::install("VariantAnnotation")} if(!require(BSgenome.Hsapiens.UCSC.hg38)) {BiocManager::install("BSgenome.Hsapiens.UCSC.hg38")} if(!require(BSgenome.Hsapiens.UCSC.hg19)) {BiocManager::install("BSgenome.Hsapiens.UCSC.hg19")} if(!require(BSgenome.Hsapiens.1000genomes.hs37d5)) {BiocManager::install("BSgenome.Hsapiens.1000genomes.hs37d5")} if(!require(ggplot2)) install.packages("ggplot2") if(!require(heatmaply)) install.packages("heatmaply") if(!require(gplots)) install.packages("gplots") if(!require(reshape2)) install.packages("reshape2") if(!require(data.table)) install.packages("data.table") if(!require(readxl)) install.packages("readxl") if(!require(openxlsx)) install.packages("openxlsx") if(!require(shiny)) install.packages("shiny") if(!require(shinyBS)) install.packages("shinyBS") if(!require(devtools)) install.packages("devtools") if(!require(shinysky)) {library(devtools); devtools::install_github("AnalytixWare/ShinySky")} if(!require(shinyjs)) install.packages("shinyjs") if(!require(V8)) install.packages("V8") if(!require(shinythemes)) install.packages("shinythemes") if(!require(plotly)) install.packages("plotly") if(!require(webshot)) install.packages("webshot") webshot::install_phantomjs() ``` Then load the shiny app: ```R library(shiny) # Easiest way is to use runGitHub runGitHub("musica", "marcos-diazg") ``` Other ways to load the app: ```R # Run a tar or zip file directly runUrl("https://github.com/marcos-diazg/musica/archive/master.tar.gz") runUrl("https://github.com/marcos-diazg/musica/archive/master.zip") # Using runApp(), first clone the repository with git. If you have cloned it into # ~/musica, first go to that directory, then use runApp(). setwd("~/musica") runApp() ``` ## Session information ``` R version 3.4.2 (2017-09-28) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 14.04.5 LTS Matrix products: default BLAS: /opt/R-3.4.2/lib64/R/lib/libRblas.so LAPACK: /opt/R-3.4.2/lib64/R/lib/libRlapack.so locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets [8] methods base other attached packages: [1] BSgenome.Hsapiens.UCSC.hg19_1.4.0 BSgenome_1.46.0 [3] rtracklayer_1.38.3 readxl_1.0.0 [5] openxlsx_4.0.17 gplots_3.0.1 [7] heatmaply_0.14.1 viridis_0.5.1 [9] viridisLite_0.3.0 VariantAnnotation_1.24.5 [11] Rsamtools_1.30.0 Biostrings_2.46.0 [13] XVector_0.18.0 SummarizedExperiment_1.8.1 [15] DelayedArray_0.4.1 matrixStats_0.53.0 [17] data.table_1.11.4 reshape2_1.4.3 [19] MutationalPatterns_1.4.2 NMF_0.20.6 [21] Biobase_2.38.0 cluster_2.0.6 [23] rngtools_1.2.4 pkgmaker_0.22 [25] registry_0.5 GenomicRanges_1.30.3 [27] GenomeInfoDb_1.14.0 IRanges_2.12.0 [29] S4Vectors_0.16.0 BiocGenerics_0.24.0 [31] plotly_4.7.1 ggplot2_3.0.0 [33] shinythemes_1.1.1 V8_1.5 [35] shinyjs_1.0 shinysky_0.1.2 [37] plyr_1.8.4 RJSONIO_1.3-0 [39] shinyBS_0.61 shiny_1.0.5 loaded via a namespace (and not attached): [1] colorspace_1.3-2 class_7.3-14 modeltools_0.2-21 [4] mclust_5.4 ggdendro_0.1-20 flexmix_2.3-14 [7] bit64_0.9-7 AnnotationDbi_1.40.0 mvtnorm_1.0-7 [10] codetools_0.2-15 doParallel_1.0.11 robustbase_0.92-8 [13] jsonlite_1.5 gridBase_0.4-7 kernlab_0.9-25 [16] compiler_3.4.2 httr_1.3.1 assertthat_0.2.0 [19] Matrix_1.2-11 lazyeval_0.2.1 htmltools_0.3.6 [22] prettyunits_1.0.2 tools_3.4.2 bindrcpp_0.2 [25] gtable_0.2.0 glue_1.2.0 GenomeInfoDbData_1.0.0 [28] dplyr_0.7.4 Rcpp_0.12.17 cellranger_1.1.0 [31] trimcluster_0.1-2 gdata_2.18.0 iterators_1.0.9 [34] fpc_2.1-11 stringr_1.2.0 mime_0.5 [37] gtools_3.8.1 XML_3.98-1.9 dendextend_1.6.0 [40] DEoptimR_1.0-8 zlibbioc_1.24.0 MASS_7.3-47 [43] scales_0.5.0 TSP_1.1-5 RColorBrewer_1.1-2 [46] yaml_2.1.16 curl_3.1 memoise_1.1.0 [49] gridExtra_2.3 biomaRt_2.34.2 stringi_1.1.6 [52] RSQLite_2.1.1 gclus_1.3.1 foreach_1.4.4 [55] RMySQL_0.10.15 seriation_1.2-2 caTools_1.17.1 [58] GenomicFeatures_1.30.3 BiocParallel_1.12.0 rlang_0.2.1 [61] pkgconfig_2.0.1 prabclus_2.2-6 bitops_1.0-6 [64] pracma_2.1.4 lattice_0.20-35 purrr_0.2.4 [67] bindr_0.1 GenomicAlignments_1.14.1 htmlwidgets_1.0 [70] cowplot_0.9.2 bit_1.1-12 magrittr_1.5 [73] R6_2.2.2 DBI_1.0.0 pillar_1.1.0 [76] whisker_0.3-2 withr_2.1.2 RCurl_1.95-4.11 [79] nnet_7.3-12 tibble_1.4.2 KernSmooth_2.23-15 [82] progress_1.1.2 grid_3.4.2 blob_1.1.1 [85] digest_0.6.15 diptest_0.75-7 webshot_0.5.0 [88] xtable_1.8-2 tidyr_0.8.0 httpuv_1.3.5 [91] munsell_0.4.3 ```