# SubPixel-BackProjection_SuperResolution **Repository Path**: ljdon/SubPixel-BackProjection_SuperResolution ## Basic Information - **Project Name**: SubPixel-BackProjection_SuperResolution - **Description**: Sub-Pixel Back-Projection For Lightweight Single Image Super-Resolution (IMVIP 2020) - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-08-10 - **Last Updated**: 2021-01-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SPBP (SubPixel-BackProjection) [[arXiv]](https://arxiv.org/abs/2008.01116) This is the Pytorch code for our proposed SubPixel-BackProjection Network For Lightweight Single Image Super-Resolution [Paper](https://www.researchgate.net/publication/342716640_Sub-Pixel_Back-Projection_Network_For_Lightweight_Single_Image_Super-Resolution). Training code will be released soon. ### Dependencies * python 3.x * pytorch 1.1.0 * cuda10 * torch * torchvision * scikit-image * pillow * pyyaml * visdom * tqdm * opencv #### Install Dependencies ``` # Create virtual environment conda create -n sr_env # Install torch conda install pytorch torchvision cudatoolkit=10.0 -c pytorch # Install skimage conda install -c conda-forge scikit-image # Install visdom conda install -c conda-forge visdom # Install pyyaml conda install -c conda-forge pyyaml # Install tqdm conda install -c conda-forge tqdm # Install OpenCV onda install -c conda-forge opencv ``` ## Datasets This project contains 2/4 benchmark datasets Set5 and Set14 due to file size limitation. All the benchmark datasets can be downloaded from: http://vllab.ucmerced.edu/wlai24/LapSRN/results/SR_testing_datasets.zip To test BSDS100 and Urban100, check the directory options/test/ for SPBP_S.yaml, SPBP_M.yaml, SPBP_L.yaml and SPBP_L+.yaml and add the following snippet under the 'datasets:' ``` test_3: # the 2st test dataset name: BSDS100 data_location: data/datasets/BSDS100/ shuffle: false n_workers: 1 # per GPU batch_size: 1 repeat: 1 test_4: # the 2st test dataset name: Urban100 data_location: data/datasets/Urban100/ shuffle: false n_workers: 1 # per GPU batch_size: 1 repeat: 1 ``` ## Testing ``` To run the test, either python test.py -config options/test/CONFIG.yaml can be used or simply run the test_run.sh file. ``` ## Results Trade-off between reconstruction accuracy versus number of operations and parameters on three datasets. The xaxis and the y-axis denote the Multi-Adds and PSNR (evaluated on the Y channel), and the size of the circle represents the number of parameters. The Mult-Adds is computed for HR image of size 720p.