# Unsupervised-Indoor-Depth **Repository Path**: loch_zhang/Unsupervised-Indoor-Depth ## Basic Information - **Project Name**: Unsupervised-Indoor-Depth - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-10-14 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Unsupervised-Indoor-Depth This page provides codes, models, and datasets in the paper: >Unsupervised Depth Learning in Challenging Indoor Video: Weak Rectification to Rescue > >[Jia-Wang Bian](https://jwbian.net/), Huangying Zhan, Naiyan Wang, Tat-Jun Chin, Chunhua Shen, Ian Reid > >[[ArXiv](https://arxiv.org/abs/2006.02708) | [Project](https://jwbian.net/unsupervised-indoor-depth) | [中文主页](https://jwbian.net/unsupervised-indoor-depth-cn)] ## Depth and point cloud visulization on 7 Scenes [![depth visualization](https://img.youtube.com/vi/A6OTJegbFzY/0.jpg)](https://www.youtube.com/watch?v=A6OTJegbFzY) ## If you find our work useful in your research please consider citing our paper: @inproceedings{bian2019depth, title={Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video}, author={Bian, Jia-Wang and Li, Zhichao and Wang, Naiyan and Zhan, Huangying and Shen, Chunhua and Cheng, Ming-Ming and Reid, Ian}, booktitle= {Thirty-third Conference on Neural Information Processing Systems (NeurIPS)}, year={2019} } @article{bian2020depth, title={Unsupervised Depth Learning in Challenging Indoor Video: Weak Rectification to Rescue}, author={Bian, Jia-Wang and Zhan, Huangying and Wang, Naiyan and Chin, Tat-Jun and Shen, Chunhua and Reid, Ian}, journal={arXiv preprint arXiv:2006.02708}, year={2020} } ## Core contributions 1. We analyze the effects of complicated camera motions on unsupervised depth learning. 2. We release an rectified NYUv2 dataset for unsupvised learning of single-view depth CNN. ## Datasets Download our pre-processed dataset from the following link: [rectified_nyu (for training)](https://1drv.ms/u/s!AiV6XqkxJHE2k3elbxAE9eE4IhRB?e=WoFpdF) | [nyu_test (for evaluation)](https://1drv.ms/u/s!AiV6XqkxJHE2kz85ZcYiCoZmSjKk?e=qGpvck) ## Training 1. Download [SC-SfMLearner-Release](https://github.com/JiawangBian/SC-SfMLearner-Release) by ``` git clone https://github.com/JiawangBian/SC-SfMLearner-Release.git ``` 2. Run 'scripts/train_nyu.sh' ``` TRAIN_SET=/media/bjw/Disk/Dataset/rectified_nyu/ python train.py $TRAIN_SET \ --folder-type pair \ --resnet-layers 18 \ --num-scales 1 \ -b16 -s0.1 -c0.5 --epoch-size 0 --epochs 50 \ --with-ssim 1 \ --with-mask 1 \ --with-auto-mask 1 \ --with-pretrain 1 \ --log-output --with-gt \ --dataset nyu \ --name r18_rectified_nyu ``` ## Evaluation 1. Download [Pretrained Models](https://1drv.ms/u/s!AiV6XqkxJHE2k3gXVTwjCgIPAUN2?e=SD5cSg). 2. Run 'scripts/test_nyu.sh' ``` DISPNET=checkpoints/rectified_nyu_r18/dispnet_model_best.pth.tar DATA_ROOT=/media/bjw/Disk/Dataset/nyu_test RESULTS_DIR=results/nyu_self/ # test 256*320 images python test_disp.py --resnet-layers 18 --img-height 256 --img-width 320 \ --pretrained-dispnet $DISPNET --dataset-dir $DATA_ROOT/color \ --output-dir $RESULTS_DIR # evaluate python eval_depth.py \ --dataset nyu \ --pred_depth=$RESULTS_DIR/predictions.npy \ --gt_depth=$DATA_ROOT/depth.npy ``` ## Results on NYUv2 ## Visual comparison ## Related projects * [SC-SfMLearner](https://github.com/JiawangBian/SC-SfMLearner-Release) (NeurIPS 2019, scale-consistent depth learning framework.) * [Depth-VO-Feat](https://github.com/Huangying-Zhan/Depth-VO-Feat) (CVPR 2018, trained on stereo videos for depth and visual odometry) * [DF-VO](https://github.com/Huangying-Zhan/DF-VO) (ICRA 2020, use scale-consistent depth with optical flow for more accurate visual odometry)