# ae_bakeoff **Repository Path**: lou_wei_yao/ae_bakeoff ## Basic Information - **Project Name**: ae_bakeoff - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-02-18 - **Last Updated**: 2021-02-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # The Great Autoencoder Bake Off The companion repository to a post on [my blog](https://krokotsch.eu). It contains all you need to reproduce the results. ## Features Currently featured autoencoders: * Shallow AE * Deep (vanilla) AE * Stacked AE * Sparse AE * Denoising AE * VAE * beta-VAE * vq-VAE They are evaluated on MNIST for the following tasks: * Reconstruction quality * Quality of decoded samples from the latent space (if possible) * Quality of latent space interpolation * Structure of the latent space visualized with [UMAP](https://github.com/lmcinnes/umap) * ROC curve for anomaly detection with the reconstruction error * Classification accuracy of a linear layer fitted on the autoencoder's features ## Installation Clone the repository and create a new conda environment with: ```shell conda create -n ae_bakeoff python=3.7 conda activate ae_bakeoff conda install --file requirements.txt -c pytorch -c conda-forge ``` Verify the installation by running the tests: ```shell cd ./tests export PYTHONPATH="../src" python -m unittest ``` ## Usage To one-click reproduce all results, call: ```shell cd ./src python reproduce.py --batch_size 256 [--gpu] ``` If you want to run any specific experiment, call: ```shell python run.py --batch_size 256 [--gpu] [--anomaly] ```