# FFA-Net **Repository Path**: luojie326/FFA-Net ## Basic Information - **Project Name**: FFA-Net - **Description**: FFA-Net: Feature Fusion Attention Network for Single Image Dehazing - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-02 - **Last Updated**: 2020-12-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## [FFA-Net: Feature Fusion Attention Network for Single Image Dehazing](https://arxiv.org/abs/1911.07559) (AAAI 2020) Official implementation. --- by Xu Qin, Zhilin Wang et al. Peking University and Beijing University of Aeronautics & Astronautics. ### Citation To be determined. ### Dependencies and Installation * python3 * PyTorch>=1.0 * NVIDIA GPU+CUDA * numpy * matplotlib * tensorboardX(optional) ### Datasets Preparation Dataset website:[RESIDE](https://sites.google.com/view/reside-dehaze-datasets/) ; Paper arXiv version:[[RESIDE: A Benchmark for Single Image Dehazing](https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fpdf%2F1712.04143.pdf&sa=D&sntz=1&usg=AFQjCNHzdt3kMDsvuJ7Ef6R4ev59OFeRYA)]
FILE STRUCTURE ``` FFA-Net |-- README.md |-- net |-- data |-- RESIDE |-- ITS |-- hazy |-- *.png |-- clear |-- *.png |-- OTS |-- hazy |-- *.jpg |-- clear |-- *.jpg |-- SOTS |-- indoor |-- hazy |-- *.png |-- clear |-- *.png |-- outdoor |-- hazy |-- *.jpg |-- clear |-- *.png ```
### Metrics update |Methods|Indoor(PSNR/SSIM)|Outdoor(PSNR/SSIM)| |-|-|-| |DCP|16.62/0.8179|19.13/0.8148| |AOD-Net|19.06/0.8504|20.29/0.8765| |DehazeNet|21.14/0.8472|22.46/0.8514| |GFN|22.30/0.8800|21.55/0.8444| |GCANet|30.23/0.9800|-/-| |Ours|36.39/0.9886|33.57/0.9840| ### Usage #### Train *Remove annotation from [main.py](net/main.py) if you want to use `tensorboard` or view `intermediate predictions`* *If you have more computing resources, expanding `bs`, `crop_size`, `gps`, `blocks` will lead to better results* train network on `ITS` dataset ```shell python main.py --net='ffa' --crop --crop_size=240 --blocks=19 --gps=3 --bs=2 --lr=0.0001 --trainset='its_train' --testset='its_test' --steps=500000 --eval_step=5000 ``` train network on `OTS` dataset ```shell python main.py --net='ffa' --crop --crop_size=240 --blocks=19 --gps=3 --bs=2 --lr=0.0001 --trainset='ots_train' --testset='ots_test' --steps=1000000 --eval_step=5000 ``` #### Test Trained_models are available at baidudrive: https://pan.baidu.com/s/1-pgSXN6-NXLzmTp21L_qIg with code: `4gat` or google drive: https://drive.google.com/drive/folders/19_lSUPrpLDZl9AyewhHBsHidZEpTMIV5?usp=sharing *Put models in the `net/trained_models/`folder.* *Put your images in `net/test_imgs/`* ```shell python test.py --task='its or ots' --test_imgs='test_imgs' ``` #### Samples