# camera_identification **Repository Path**: lwgaoxin/camera_identification ## Basic Information - **Project Name**: camera_identification - **Description**: IEEE's Signal Processing Society - Camera Model Identification - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-19 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # IEEE's Signal Processing Society - Camera Model Identification Code for Kaggle competition: https://www.kaggle.com/c/sp-society-camera-model-identification This repo contains code for training and predicting single Resnet50 model which achieves 98% accuracy on private LB. # Run training Download competition's dataset https://www.kaggle.com/c/sp-society-camera-model-identification/data You can use more data from flickr to reduce overfitting. Next, download pretrained weight from https://download.pytorch.org/models/resnet50-19c8e357.pth Next, call `python train.py --train_files train_files --val_files val_files --pretrained_weights_path resnet50-19c8e357.pth --batch_size 128 --model_save_path model.pth` You will need some time to train a model. It takes ~4 hours on a single Tesla M40. # Run prediction Just call `python predict.py --test_files test_files --batch_size 128 --model_path model.pth --submit_path submit.csv` In the finish, there will be a file submit.csv which you will be able to submit on Kaggle.