# LSTM_Stacked_Autoencoder **Repository Path**: lxypaperduo/LSTM_Stacked_Autoencoder ## Basic Information - **Project Name**: LSTM_Stacked_Autoencoder - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-01-04 - **Last Updated**: 2024-01-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # LSTM Stacked Autoencoder **- Data Set :** Samsung Electronics Stock Price(Close), 2016-01-04 ~ 2021-12-30
**- Tool :** Python, Jupyter Notebook, Tensorflow, Keras
**- Model :** LSTM Stacked Autoencoder
**- Purpose :** Denoise stock price
**- Reference :** Stacked LSTM Sequence-to-Sequence Autoencoder with Feature Selection
      for Daily Solar Radiation Prediction: A Review and New Modeling Results

**- My Plan :** (1) Output inverse_transform and estimate MSE
     (2) Make a trading strategy with this graph
     (3) Develop trading program with securities's API
     (4) Kiwoom Securities https://www.kiwoom.com/h/main
# 1. Model Shapes ![model_shapes](https://user-images.githubusercontent.com/60992415/186334667-97bf0ec6-fb1f-44bd-b673-04559de97685.png) # 2. Loss Graph ![Loss](https://user-images.githubusercontent.com/60992415/186334998-e45ba62f-dbcd-4a20-b6d8-aa6204414009.png) # 3. Output Graph ![output](https://user-images.githubusercontent.com/60992415/186335089-c19e08d6-464e-45b0-b76d-640ebd4dca67.png)