# Reinforcement-Learning-for-Sequential-Decision-and-Optimal-Control **Repository Path**: lzyxx/Reinforcement-Learning-for-Sequential-Decision-and-Optimal-Control ## Basic Information - **Project Name**: Reinforcement-Learning-for-Sequential-Decision-and-Optimal-Control - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-03-25 - **Last Updated**: 2024-03-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Apress Source Code This repository accompanies [Reinforcement Learning for Sequential Decision and Optimal Control](https://link.springer.com/book/10.1007/978-981-19-7784-8) by Shengbo Eben Li (SpringerNature, 2023). [comment]: #cover ![Cover image](9789811977831.jpg) Download the files as a zip using the green button, or clone the repository to your machine using Git. ## Releases Release v1.0 corresponds to the code in the published book, without corrections or updates. ## Run codes of this book Setup conda first, and install dependencies. ```bash conda env create -n rlbook -f environment.yml conda activate rlbook ``` Then open each folder and run `main` or `plot` Python script. ## Source Layout 1. `Chap_3_4_CleanRobot`: Code for robot cleaning example in Chapter 3 and 4. 2. `Chap_5_AutoCar_GridRoad`: Code for autonomous car example in Chapter 5. 3. `Chap_6_Actor_Critic_Algorithm`: Code for actor-critic algorithm in Chapter 6. 4. `Chap_7_AC_wtih_Baseline`: Code for AC algorithm with baseline comparison in Chapter 7. 5. `Chap_8_Veh_Track_Ctrl`: Code for vehicle tracking control example in Chapter 8. 6. `Chap_9_Car_Brake_Control`: Code for emergency braking control example in Chapter 9. ## Contributions See the file Contributing.md for more information on how you can contribute to this repository.