# Image_Segmentation **Repository Path**: m1a0up/Image_Segmentation ## Basic Information - **Project Name**: Image_Segmentation - **Description**: pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net. - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2020-03-11 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net. U-Net: Convolutional Networks for Biomedical Image Segmentation https://arxiv.org/abs/1505.04597 Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation https://arxiv.org/abs/1802.06955 Attention U-Net: Learning Where to Look for the Pancreas https://arxiv.org/abs/1804.03999 Attention R2U-Net : Just integration of two recent advanced works R2U-Net, Attention U-Net. ## U-Net ![U-Net](/img/U-Net.png) ## R2U-Net ![R2U-Net](/img/R2U-Net.png) ## Attention U-Net ![AttU-Net](/img/AttU-Net.png) ## Attention R2U-Net ![AttR2U-Net](/img/AttR2U-Net.png) ## Evaluation we just test the models with ISIC 2018 dataset. The dataset was split into three subsets, training set, validation set, and test set, which the proportion is 70%, 10% and 20% of the whole dataset, respectively. The entire dataset contains 2594 images where 1815 images were used for training, 259 for validation and 520 for testing models. ![evaluation](/img/Evaluation.png)