# FCHarDNet **Repository Path**: mabeisi/FCHarDNet ## Basic Information - **Project Name**: FCHarDNet - **Description**: Fully Convolutional HarDNet for Segmentation in Pytorch - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-10-28 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # FCHarDNet ### Fully Convolutional HarDNet for Segmentation in Pytorch * Implementaion based on [Harmonic DenseNet: A low memory traffic network (ICCV 2019)](https://arxiv.org/abs/1909.00948) * Refer to [Pytorch-HarDNet](https://github.com/PingoLH/Pytorch-HarDNet) for more information about the backbone model * This repo was forked from [meetshah1995/pytorch-semseg](https://github.com/meetshah1995/pytorch-semseg) ### Architecture * Simple U-shaped encoder-decoder structure * Conv3x3/Conv1x1 only (including the first layer) * No self-attention layer or Pyramid Pooling

### Results

| Method | #Param
(M) | GMACs /
GFLOPs | Cityscapes
mIoU | fps on Titan-V
@1024x2048 | fps on 1080ti
@1024x2048 | | :---: | :---: | :---: | :---: | :---: | :---: | | ICNet | 7.7 | 30.7 | 69.5 | 63 | 48 | | SwiftNetRN-18 | 11.8 | 104 | 75.5 | - | 39.9 | | BiSeNet (1024x2048) | 13.4 | 119 | 77.7 | 36 | 27 | | BiSeNet (768x1536) | 13.4 | 66.8 | 74.7 | 72** | 54** | | **FC-HarDNet-70** | **4.1** | **35.4** | **76.0** | **70** | **53** | - ** Speed tested in 1536x768 instead of full resolution. --------------------- ### DataLoaders implemented * [CamVid](http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/) * [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/segexamples/index.html) * [ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K/) * [MIT Scene Parsing Benchmark](http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip) * [Cityscapes](https://www.cityscapes-dataset.com/) * [NYUDv2](http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html) * [Sun-RGBD](http://rgbd.cs.princeton.edu/) ### Requirements * pytorch >=0.4.0 * torchvision ==0.2.0 * scipy * tqdm * tensorboardX ### Usage **Setup config file** Please see the usage section in [meetshah1995/pytorch-semseg](https://github.com/meetshah1995/pytorch-semseg) **To train the model :** ``` python train.py [-h] [--config [CONFIG]] --config Configuration file to use (default: hardnet.yml) ``` **To validate the model :** ``` usage: validate.py [-h] [--config [CONFIG]] [--model_path [MODEL_PATH]] [--save_image] [--eval_flip] [--measure_time] --config Config file to be used --model_path Path to the saved model --eval_flip Enable evaluation with flipped image | False by default --measure_time Enable evaluation with time (fps) measurement | True by default --save_image Enable writing result images to out_rgb (pred label blended images) and out_predID ``` ### Pretrained Weights * Cityscapes pretrained weights: [Download](https://ping-chao.com/hardnet/hardnet70_cityscapes_model.pkl)
(Val mIoU: 77.7, Test mIoU: 75.9) * Cityscapes pretrained with color jitter augmentation: [Download](https://ping-chao.com/hardnet/hardnet70_cityscapes_model_2.pkl)
(Val mIoU: 77.4, Test mIoU: 76.0) * HarDNet-Petite weights pretrained by ImageNet:
included in [weights/hardnet_petite_base.pth](https://github.com/PingoLH/FCHarDNet/tree/master/weights) ### Prediction Samples