# SegGradCAM **Repository Path**: mabeisi/SegGradCAM ## Basic Information - **Project Name**: SegGradCAM - **Description**: SEG-GRAD-CAM: Interpretable Semantic Segmentation via Gradient-Weighted Class Activation Mapping - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-17 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SEG-GRAD-CAM Publicly available implementation in Keras of our [paper](https://aaai.org/ojs/index.php/AAAI/article/view/7244) "Towards Interpretable Semantic Segmentation via Gradient-Weighted Class Activation Mapping" by Kira Vinogradova, Alexandr Dibrov, Gene Myers. Check out our [poster](./poster_Vinogradova_AAAI_Feb2020.pdf) for a schematic overview of the method. # Installation ``pip install git+https://github.com/kiraving/SegGradCAM.git`` # Requirements Python 3.6, (recommended) Anaconda, versions of other packages can be found [here](./code/get_versions.ipynb) Please download [Cityscapes](https://www.cityscapes-dataset.com/) (Fine annotations) if you intend to test Seg-Grad-CAM on a real-world dataset collected on German roads. # Usage * [Code for Seg-Grad-CAM method](./seggradcam/seggradcam.py#L118) * [Notebook for training, loading pretrained model and usage of Seg-Grad-CAM on TextureMNIST](./code/textureMNIST-notebooks/demo.ipynb) * [Training a U-Net with a backbone on Cityscapes & applying Seg-Grad-CAM](./code/cityscapes-notebooks/city_demo_backbone.ipynb) * [Vanilla U-Net on Cityscapes & Seg-Grad-CAM](./code/cityscapes-notebooks/city_demo_vanilla.ipynb) # Credits: [CSBDeep](https://github.com/csbdeep/csbdeep) @article{weigert2018content, title={Content-aware image restoration: pushing the limits of fluorescence microscopy}, author={Weigert, Martin and Schmidt, Uwe and Boothe, Tobias and M{\"u}ller, Andreas and Dibrov, Alexandr and Jain, Akanksha and Wilhelm, Benjamin and Schmidt, Deborah and Broaddus, Coleman and Culley, Si{\^a}n and others}, journal={Nature methods}, volume={15}, number={12}, pages={1090--1097}, year={2018}, publisher={Nature Publishing Group} } [Cityscapes](https://www.cityscapes-dataset.com/) dataset: @inproceedings{Cordts2016Cityscapes, title={The Cityscapes Dataset for Semantic Urban Scene Understanding}, author={Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt}, booktitle={Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2016} } [segmentation_models](https://github.com/qubvel/segmentation_models) package: @misc{Yakubovskiy:2019, Author = {Pavel Yakubovskiy}, Title = {Segmentation Models}, Year = {2019}, Publisher = {GitHub}, Journal = {GitHub repository}, Howpublished = {\url{https://github.com/qubvel/segmentation_models}} } [TextureMNIST dataset](https://github.com/boschresearch/GridSaliency-ToyDatasetGen) Code for toy dataset generation of "Grid Saliency for Context Explanations of Semantic Segmentation" [paper](https://arxiv.org/abs/1907.13054) # How to cite Seg-Grad-CAM: @inproceedings{Vinogradova2020TowardsIS, title={Towards Interpretable Semantic Segmentation via Gradient-weighted Class Activation Mapping}, author={Kira Vinogradova and Alexandr Dibrov and Eugene W. Myers}, booktitle = {Proceedings of the AAAI Conference on Artificial Intelligence}, year = {2020}, doi = {10.1609/aaai.v34i10.7244} }