# DetectoRS **Repository Path**: magic_public_transportation/DetectoRS ## Basic Information - **Project Name**: DetectoRS - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-10-12 - **Last Updated**: 2024-06-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DetectoRS ## News [06/30/2020] DetectoRS is now officially supported by [MMDetection](https://github.com/open-mmlab/mmdetection). A huge thanks to [@xvjiarui](https://github.com/xvjiarui), [@ZwwWayne](https://github.com/ZwwWayne) and [@hellock](https://github.com/hellock) for helping migrating the code. [06/15/2020] We have released the implementation of DetectoRS based on mmdetection-v2 in the branch **mmdetv2**, which allows more detectors to use RFP and SAC. ## Introduction This repo holds the code for [DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution](https://arxiv.org/pdf/2006.02334.pdf). The project is based on [mmdetection codebase](https://github.com/open-mmlab/mmdetection). Please refer to [mmdetection readme](README.mmdet.md) for installation and running scripts. The code is tested with PyTorch 1.4.0. It may not run with other versions. See [conda_env.md](conda_env.md) for the versions of all the packages. ## Main Results on COCO test-dev | Method | Backbone | Config | Model | Box AP | Mask AP | |-----------|:-----------------:|--------------|--------------|:------------:|:------------:| | DetectoRS | ResNet-50 | [File Link](configs/DetectoRS/DetectoRS_mstrain_400_1200_r50_40e.py) | [Download](http://cs.jhu.edu/~syqiao/DetectoRS/DetectoRS_R50-0f1c8080.pth) | 51.3 | 44.4 | | DetectoRS | ResNeXt-101-32x4d | [File Link](configs/DetectoRS/DetectoRS_mstrain_400_1200_x101_32x4d_40e.py) | [Download](https://www.cs.jhu.edu/~syqiao/DetectoRS/DetectoRS_X101-ed983634.pth) | 53.3 | 45.8 | ## Citing DetectoRS If you think DetectoRS is useful in your project, please consider citing us. ```BibTeX @article{detectors, title={DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution}, author={Qiao, Siyuan and Chen, Liang-Chieh and Yuille, Alan}, journal={arXiv preprint arXiv:2006.02334}, year={2020} } ```