# Iris_Landmarks_PyTorch **Repository Path**: marenan_admin/Iris_Landmarks_PyTorch ## Basic Information - **Project Name**: Iris_Landmarks_PyTorch - **Description**: Iris landmarks localization - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-13 - **Last Updated**: 2021-01-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Dense Iris Landmarks Repo for dense iris landmarks localization with synthesized eye dataset. ## Repo Structure ./config.py: config file ./loss.py: loss function ./checkpoint.py: save the trained model ./tools: some utitilies ./test: test results ## Prepare Dataset There are two methods to prepare the training data. 1. You could use the software [here](https://www.cl.cam.ac.uk/research/rainbow/projects/unityeyes/tutorial.html) to synthesiz all kinds of data yourself. Then use scripts in `./gen_dataset` to generate training data. 2. You could also use the dataset I provided. directly. Just download the dataset and put train images in `./data` directory. In this case the annotations are already prepared in `annotations` directory. Adress:https://pan.baidu.com/s/1gzYAVvEuhuu6L8tos3zXAQ Password:990n ## Train config all the training parameters in `config.py` RUN `python training/train.py` to train your model. Training results are kept in `results` directory. ## Test Put well croped eye images in `./data/test` RUN `python test/test_image.py` to test your model. ![result.jpg](https://raw.githubusercontent.com/ItchyHiker/Irsi_Landmarks/master/images/test_result.png)