# pytorch-semseg **Repository Path**: marenan_admin/pytorch-semseg ## Basic Information - **Project Name**: pytorch-semseg - **Description**: Semantic Segmentation Architectures Implemented in PyTorch - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-29 - **Last Updated**: 2021-03-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # pytorch-semseg [](https://github.com/meetshah1995/pytorch-semseg/blob/master/LICENSE) [](https://pypi.python.org/pypi/pytorch-semseg/0.1.2) [](https://doi.org/10.5281/zenodo.1185075) ## Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures in PyTorch.
### Networks implemented * [PSPNet](https://arxiv.org/abs/1612.01105) - With support for loading pretrained models w/o caffe dependency * [ICNet](https://arxiv.org/pdf/1704.08545.pdf) - With optional batchnorm and pretrained models * [FRRN](https://arxiv.org/abs/1611.08323) - Model A and B * [FCN](https://arxiv.org/abs/1411.4038) - All 1 (FCN32s), 2 (FCN16s) and 3 (FCN8s) stream variants * [U-Net](https://arxiv.org/abs/1505.04597) - With optional deconvolution and batchnorm * [Link-Net](https://codeac29.github.io/projects/linknet/) - With multiple resnet backends * [Segnet](https://arxiv.org/abs/1511.00561) - With Unpooling using Maxpool indices #### Upcoming * [E-Net](https://arxiv.org/abs/1606.02147) * [RefineNet](https://arxiv.org/abs/1611.06612) ### DataLoaders implemented * [CamVid](http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/) * [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/segexamples/index.html) * [ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K/) * [MIT Scene Parsing Benchmark](http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip) * [Cityscapes](https://www.cityscapes-dataset.com/) * [NYUDv2](http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html) * [Sun-RGBD](http://rgbd.cs.princeton.edu/) ### Requirements * pytorch >=0.4.0 * torchvision ==0.2.0 * scipy * tqdm * tensorboardX #### One-line installation `pip install -r requirements.txt` ### Data * Download data for desired dataset(s) from list of URLs [here](https://meetshah1995.github.io/semantic-segmentation/deep-learning/pytorch/visdom/2017/06/01/semantic-segmentation-over-the-years.html#sec_datasets). * Extract the zip / tar and modify the path appropriately in your `config.yaml` ### Usage **Setup config file** ```yaml # Model Configuration model: arch: