# ollama-python **Repository Path**: markhoo/ollama-python ## Basic Information - **Project Name**: ollama-python - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-13 - **Last Updated**: 2025-01-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Ollama Python Library The Ollama Python library provides the easiest way to integrate Python 3.8+ projects with [Ollama](https://github.com/ollama/ollama). ## Prerequisites - [Ollama](https://ollama.com/download) should be installed and running - Pull a model to use with the library: `ollama pull ` e.g. `ollama pull llama3.2` - See [Ollama.com](https://ollama.com/search) for more information on the models available. ## Install ```sh pip install ollama ``` ## Usage ```python from ollama import chat from ollama import ChatResponse response: ChatResponse = chat(model='llama3.2', messages=[ { 'role': 'user', 'content': 'Why is the sky blue?', }, ]) print(response['message']['content']) # or access fields directly from the response object print(response.message.content) ``` See [_types.py](ollama/_types.py) for more information on the response types. ## Streaming responses Response streaming can be enabled by setting `stream=True`. ```python from ollama import chat stream = chat( model='llama3.2', messages=[{'role': 'user', 'content': 'Why is the sky blue?'}], stream=True, ) for chunk in stream: print(chunk['message']['content'], end='', flush=True) ``` ## Custom client A custom client can be created by instantiating `Client` or `AsyncClient` from `ollama`. All extra keyword arguments are passed into the [`httpx.Client`](https://www.python-httpx.org/api/#client). ```python from ollama import Client client = Client( host='http://localhost:11434', headers={'x-some-header': 'some-value'} ) response = client.chat(model='llama3.2', messages=[ { 'role': 'user', 'content': 'Why is the sky blue?', }, ]) ``` ## Async client The `AsyncClient` class is used to make asynchronous requests. It can be configured with the same fields as the `Client` class. ```python import asyncio from ollama import AsyncClient async def chat(): message = {'role': 'user', 'content': 'Why is the sky blue?'} response = await AsyncClient().chat(model='llama3.2', messages=[message]) asyncio.run(chat()) ``` Setting `stream=True` modifies functions to return a Python asynchronous generator: ```python import asyncio from ollama import AsyncClient async def chat(): message = {'role': 'user', 'content': 'Why is the sky blue?'} async for part in await AsyncClient().chat(model='llama3.2', messages=[message], stream=True): print(part['message']['content'], end='', flush=True) asyncio.run(chat()) ``` ## API The Ollama Python library's API is designed around the [Ollama REST API](https://github.com/ollama/ollama/blob/main/docs/api.md) ### Chat ```python ollama.chat(model='llama3.2', messages=[{'role': 'user', 'content': 'Why is the sky blue?'}]) ``` ### Generate ```python ollama.generate(model='llama3.2', prompt='Why is the sky blue?') ``` ### List ```python ollama.list() ``` ### Show ```python ollama.show('llama3.2') ``` ### Create ```python modelfile=''' FROM llama3.2 SYSTEM You are mario from super mario bros. ''' ollama.create(model='example', modelfile=modelfile) ``` ### Copy ```python ollama.copy('llama3.2', 'user/llama3.2') ``` ### Delete ```python ollama.delete('llama3.2') ``` ### Pull ```python ollama.pull('llama3.2') ``` ### Push ```python ollama.push('user/llama3.2') ``` ### Embed ```python ollama.embed(model='llama3.2', input='The sky is blue because of rayleigh scattering') ``` ### Embed (batch) ```python ollama.embed(model='llama3.2', input=['The sky is blue because of rayleigh scattering', 'Grass is green because of chlorophyll']) ``` ### Ps ```python ollama.ps() ``` ## Errors Errors are raised if requests return an error status or if an error is detected while streaming. ```python model = 'does-not-yet-exist' try: ollama.chat(model) except ollama.ResponseError as e: print('Error:', e.error) if e.status_code == 404: ollama.pull(model) ```