# Federated_learning **Repository Path**: mastlab-t3s/Federated_learning ## Basic Information - **Project Name**: Federated_learning - **Description**: 联邦学习代码库 包含同步方法:FedAvg、FedProx、Moon、FedGen、FedGKD、ClusteredSampling、FedMLB等 异步方法:FedASync、FedSA、SAFA、GitFL等 分割联邦学习方法:SplitFed - **Primary Language**: Python - **License**: Not specified - **Default Branch**: public - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 5 - **Forks**: 0 - **Created**: 2023-11-16 - **Last Updated**: 2024-10-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Federated Learning [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4321561.svg)](https://doi.org/10.5281/zenodo.4321561) This is partly the reproduction of the paper of [Communication-Efficient Learning of Deep Networks from Decentralized Data](https://arxiv.org/abs/1602.05629) Only experiments on MNIST and CIFAR10 (both IID and non-IID) is produced by far. Note: The scripts will be slow without the implementation of parallel computing. ## Requirements python>=3.6 pytorch>=0.4 ## Run The MLP and CNN models are produced by: > python [main_nn.py](main_nn.py) Federated learning with MLP and CNN is produced by: > python [main_fed.py](main_fed.py) See the arguments in [options.py](utils/options.py). For example: > python main_fed.py --dataset mnist --iid --num_channels 1 --model cnn --epochs 50 --gpu 0 NB: for CIFAR-10, `num_channels` must be 3. ## Results ## Ackonwledgements Acknowledgements give to [youkaichao](https://github.com/youkaichao). ## References McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Artificial Intelligence and Statistics (AISTATS), 2017. Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine Learning and Systems 2 (2020): 429-450. Li, Qinbin, Bingsheng He, and Dawn Song. "Model-contrastive federated learning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. Fraboni, Yann, et al. "Clustered sampling: Low-variance and improved representativity for clients selection in federated learning." International Conference on Machine Learning. PMLR, 2021. Yao, Dezhong, et al. "Local-Global Knowledge Distillation in Heterogeneous Federated Learning with Non-IID Data." arXiv preprint arXiv:2107.00051 (2021). Zhu, Zhuangdi, Junyuan Hong, and Jiayu Zhou. "Data-free knowledge distillation for heterogeneous federated learning." International Conference on Machine Learning. PMLR, 2021. Gao, Liang, et al. "FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling and Correction." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022. Kim, Jinkyu and Kim, Geeho and Han, Bohyung. "Multi-Level Branched Regularization for Federated Learning." International Conference on Machine Learning. PMLR, 2022. Lee, Gihun, et al. "Preservation of the global knowledge by not-true distillation in federated learning." Advances in Neural Information Processing Systems 35 (2022): 38461-38474.