# MobileNetV2-pytorch **Repository Path**: maxibooksiyi/MobileNetV2-pytorch ## Basic Information - **Project Name**: MobileNetV2-pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-06 - **Last Updated**: 2023-12-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MobileNetv2 in PyTorch An implementation of `MobileNetv2` in PyTorch. `MobileNetv2` is an efficient convolutional neural network architecture for mobile devices. For more information check the paper: [Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation](https://arxiv.org/abs/1801.04381) ## Usage Clone the repo: ```bash git clone https://github.com/Randl/MobileNetV2-pytorch pip install -r requirements.txt ``` Use the model defined in `model.py` to run ImageNet example: ```bash python imagenet.py --dataroot "/path/to/imagenet/" ``` To run continue training from checkpoint ```bash python imagenet.py --dataroot "/path/to/imagenet/" --resume "/path/to/checkpoint/folder" ``` ## Results For x1.0 model I achieved 0.3% higher top-1 accuracy than claimed. |Classification Checkpoint| MACs (M) | Parameters (M)| Top-1 Accuracy| Top-5 Accuracy| Claimed top-1| Claimed top-5| |-------------------------|------------|---------------|---------------|---------------|---------------|---------------| | [mobilenet_v2_1.0_224]|300 |3.47 | 72.10| 90.48| 71.8| 91.0| | [mobilenet_v2_0.5_160]|50 |1.95 | 60.61| 82.87| 61.0| 83.2| You can test it with ```bash python imagenet.py --dataroot "/path/to/imagenet/" --resume "results/mobilenet_v2_1.0_224/model_best.pth.tar" -e python imagenet.py --dataroot "/path/to/imagenet/" --resume "results/mobilenet_v2_0.5_160/model_best.pth.tar" -e --scaling 0.5 --input-size 160 ```