# UnifiedParticleFrameworkCUDA **Repository Path**: mbt/UnifiedParticleFrameworkCUDA ## Basic Information - **Project Name**: UnifiedParticleFrameworkCUDA - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-06-20 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # UnifiedParticleFrameworkCUDA A unified particle framework similar to NVIDIA FleX. It uses CUDA to accelerate simulation of fluids, rigid bodies, deformable bodies and granular flows on the GPU. References: [1] P. Goswami, P. Schlegel, B. Solenthaler, et al. Interactive SPH simulation and rendering on the GPU[C] Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’10). [2] X. Nie, L. Chen, T. Xiang. Real-Time Incompressible Fluid Simulation on the GPU[J]. International Journal of Computer Games Technology, 2015. [3] N. Akinci, M. Ihmsen, G. Akinci, et al. Versatile rigid-fluid coupling for incompressible SPH[J]. ACM Transactions on Graphics (Proceedings SIGGRAPH) 30, 4 (2012). [4] N. Akinci, G. Akinci, M. Teschner. Versatile surface tension and adhesion for SPH fluids[J]. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 32, 6 (2013) Portfolio: YouTube Link: https://www.youtube.com/user/niexiao2008/videos?view_as=public Youku Link: http://i.youku.com/u/UMzg0NDExODQ=/videos Development Environment: Windows 7 & Visual C++ 2010 & CUDA Toolkit v7.0 (The default CUDA toolkit installation location is C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0) & Intel 3770(CPU) & GTX 780(GPU) Coding style: Coding style for this project generally follows the Google C++ Style Guide Note: I use GTX 780 for testing. Since It has compute capability 3.5, I set code generation as compute_35 & sm_35. Also, the header file "sm_35_atomic_functions.h" has been included in particlues_kernel.cuh. You might need to slightly change these settings if you use different GPU with earlier compute capability. But any devices from Fermi to maxwell would work with the code.