# taichi_mpm **Repository Path**: mbt/taichi_mpm ## Basic Information - **Project Name**: taichi_mpm - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-06-20 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) *(MIT License now!)* **A Moving Least Squares Material Point Method with Displacement Discontinuity and Two-Way Rigid Body Coupling**, ACM Transactions on Graphics (SIGGRAPH 2018). By [Yuanming Hu (MIT CSAIL)](http://taichi.graphics/me/), [Yu Fang (Tsinghua University)](http://squarefk.com/), Ziheng Ge (University of Science and Technology of China), Ziyin Qu (University of Pennsylvania), [Yixin Zhu (UCLA)](https://www.yzhu.io/), [Andre Pradhana (University of Pennsylvania)](https://www.seas.upenn.edu/~apradh/menu/about.html), [Chenfanfu Jiang (University of Pennsylvania)](https://www.seas.upenn.edu/~cffjiang/). Discussion Forum: [![Join the chat at https://gitter.im/taichi-dev/Lobby](https://badges.gitter.im/taichi-dev/Lobby.svg)](https://gitter.im/taichi-dev/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) ### News - (August 2019) Check out our [SIGGRAPH 2019 course on high-performance MPM](http://taichi.graphics/mpm_course2019/)! - (May 2019) Check out niall's MLS-MPM [Unity implementation](https://github.com/nialltl/incremental_mpm) and [tutorial](https://nialltl.neocities.org/articles/mpm_guide.html)! - (March 2019) David Medina contributed [mls-mpm88-explained.cpp](https://github.com/yuanming-hu/taichi_mpm/blob/master/mls-mpm88-explained.cpp) which is much easier to read than the original 88-line version. - (March 2019) Roberto Toro made [mls-mpm.js](https://github.com/r03ert0/mls-mpm.js) that [runs in your browser](https://r03ert0.github.io/mls-mpm.js/index.html)! - (March 2019) This software is now released under the **MIT license**. Feel free to use it commercially. We would appreciate your acknoledgements if our software helps you. #### [[Introduction & Demo Video](https://www.youtube.com/watch?v=8iyvhGF9f7o)] [[Paper](http://taichi.graphics/wp-content/uploads/2019/03/mls-mpm-cpic.pdf)] [[Supplemental Document](http://taichi.graphics/wp-content/uploads/2018/04/mls-mpm-cpic-supp.pdf)] [[88-Line MLS-MPM](https://github.com/yuanming-hu/taichi_mpm#88-line-version-mit-license-download-c--javascript-versions)] #### [[SIGGRAPH 2018 Fast Forward](https://youtu.be/9RlNEgwTtPI)] [[PDF Slides](https://github.com/yuanming-hu/taichi_mpm/releases/download/SIGGRAPH2018/mls-mpm-cpic-slides.pdf)] [[PDF Slides with Notes](https://github.com/yuanming-hu/taichi_mpm/releases/download/SIGGRAPH2018/mls-mpm-cpic-slides-with-notes.pdf)] ## 88-Line Version (MIT License) [[Download C++ & Javascript versions](https://github.com/yuanming-hu/taichi_mpm/releases/download/SIGGRAPH2018/mls-mpm88.zip)] Supports Linux, OS X and Windows. Tested on Ubuntu 16.04, Ubuntu 18.04, Arch Linux, MinGW, VS2017, OS X 10.11~10.14. No need to install `taichi` or `taichi_mpm` - see the end of code for instructions. ``` C++ //88-Line 2D Moving Least Squares Material Point Method (MLS-MPM)[with comments] //#define TC_IMAGE_IO // Uncomment this line for image exporting functionality #include "taichi.h" // Note: You DO NOT have to install taichi or taichi_mpm. using namespace taichi;// You only need [taichi.h] - see below for instructions. const int n = 80 /*grid resolution (cells)*/, window_size = 800; const real dt = 1e-4_f, frame_dt = 1e-3_f, dx = 1.0_f / n, inv_dx = 1.0_f / dx; auto particle_mass = 1.0_f, vol = 1.0_f; auto hardening = 10.0_f, E = 1e4_f, nu = 0.2_f; real mu_0 = E / (2 * (1 + nu)), lambda_0 = E * nu / ((1+nu) * (1 - 2 * nu)); using Vec = Vector2; using Mat = Matrix2; bool plastic = true; struct Particle { Vec x, v; Mat F, C; real Jp; int c/*color*/; Particle(Vec x, int c, Vec v=Vec(0)) : x(x), v(v), F(1), C(0), Jp(1), c(c){}}; std::vector particles; Vector3 grid[n + 1][n + 1]; // velocity + mass, node_res = cell_res + 1 void advance(real dt) { std::memset(grid, 0, sizeof(grid)); // Reset grid for (auto &p : particles) { // P2G Vector2i base_coord=(p.x*inv_dx-Vec(0.5_f)).cast();//element-wise floor Vec fx = p.x * inv_dx - base_coord.cast(); // Quadratic kernels [http://mpm.graphics Eqn. 123, with x=fx, fx-1,fx-2] Vec w[3]{Vec(0.5) * sqr(Vec(1.5) - fx), Vec(0.75) - sqr(fx - Vec(1.0)), Vec(0.5) * sqr(fx - Vec(0.5))}; auto e = std::exp(hardening * (1.0_f - p.Jp)), mu=mu_0*e, lambda=lambda_0*e; real J = determinant(p.F); // Current volume Mat r, s; polar_decomp(p.F, r, s); //Polar decomp. for fixed corotated model auto stress = // Cauchy stress times dt and inv_dx -4*inv_dx*inv_dx*dt*vol*(2*mu*(p.F-r) * transposed(p.F)+lambda*(J-1)*J); auto affine = stress+particle_mass*p.C; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) { // Scatter to grid auto dpos = (Vec(i, j) - fx) * dx; Vector3 mv(p.v * particle_mass, particle_mass); //translational momentum grid[base_coord.x + i][base_coord.y + j] += w[i].x*w[j].y * (mv + Vector3(affine*dpos, 0)); } } for(int i = 0; i <= n; i++) for(int j = 0; j <= n; j++) { //For all grid nodes auto &g = grid[i][j]; if (g[2] > 0) { // No need for epsilon here g /= g[2]; // Normalize by mass g += dt * Vector3(0, -200, 0); // Gravity real boundary=0.05,x=(real)i/n,y=real(j)/n; //boundary thick.,node coord if (x < boundary||x > 1-boundary||y > 1-boundary) g=Vector3(0); //Sticky if (y < boundary) g[1] = std::max(0.0_f, g[1]); //"Separate" } } for (auto &p : particles) { // Grid to particle Vector2i base_coord=(p.x*inv_dx-Vec(0.5_f)).cast();//element-wise floor Vec fx = p.x * inv_dx - base_coord.cast(); Vec w[3]{Vec(0.5) * sqr(Vec(1.5) - fx), Vec(0.75) - sqr(fx - Vec(1.0)), Vec(0.5) * sqr(fx - Vec(0.5))}; p.C = Mat(0); p.v = Vec(0); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) { auto dpos = (Vec(i, j) - fx), grid_v = Vec(grid[base_coord.x + i][base_coord.y + j]); auto weight = w[i].x * w[j].y; p.v += weight * grid_v; // Velocity p.C += 4 * inv_dx * Mat::outer_product(weight * grid_v, dpos); // APIC C } p.x += dt * p.v; // Advection auto F = (Mat(1) + dt * p.C) * p.F; // MLS-MPM F-update Mat svd_u, sig, svd_v; svd(F, svd_u, sig, svd_v); for (int i = 0; i < 2 * int(plastic); i++) // Snow Plasticity sig[i][i] = clamp(sig[i][i], 1.0_f - 2.5e-2_f, 1.0_f + 7.5e-3_f); real oldJ = determinant(F); F = svd_u * sig * transposed(svd_v); real Jp_new = clamp(p.Jp * oldJ / determinant(F), 0.6_f, 20.0_f); p.Jp = Jp_new; p.F = F; } } void add_object(Vec center, int c) { // Seed particles with position and color for (int i = 0; i < 500; i++) // Randomly sample 1000 particles in the square particles.push_back(Particle((Vec::rand()*2.0_f-Vec(1))*0.08_f + center, c)); } int main() { GUI gui("Real-time 2D MLS-MPM", window_size, window_size); add_object(Vec(0.55,0.45), 0xED553B); add_object(Vec(0.45,0.65), 0xF2B134); add_object(Vec(0.55,0.85), 0x068587); auto &canvas = gui.get_canvas();int f=0; for (int i = 0;; i++) { // Main Loop advance(dt); // Advance simulation if (i % int(frame_dt / dt) == 0) { // Visualize frame canvas.clear(0x112F41); // Clear background canvas.rect(Vec(0.04), Vec(0.96)).radius(2).color(0x4FB99F).close();// Box for(auto p:particles)canvas.circle(p.x).radius(2).color(p.c);//Particles gui.update(); // Update image // canvas.img.write_as_image(fmt::format("tmp/{:05d}.png", f++)); } } } //---------------------------------------------------------------------------- /* ----------------------------------------------------------------------------- ** Reference: A Moving Least Squares Material Point Method with Displacement Discontinuity and Two-Way Rigid Body Coupling (SIGGRAPH 2018) By Yuanming Hu (who also wrote this 88-line version), Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, Chenfanfu Jiang ** Build Instructions: Step 1: Download and unzip mls-mpm88.zip (Link: http://bit.ly/mls-mpm88) Now you should have "mls-mpm88.cpp" and "taichi.h". Step 2: Compile and run * Linux: g++ mls-mpm88.cpp -std=c++14 -g -lX11 -lpthread -O3 -o mls-mpm ./mls-mpm * Windows (MinGW): g++ mls-mpm88.cpp -std=c++14 -lgdi32 -lpthread -O3 -o mls-mpm .\mls-mpm.exe * Windows (Visual Studio 2017+): - Create an "Empty Project" - Use taichi.h as the only header, and mls-mpm88.cpp as the only source - Change configuration to "Release" and "x64" - Press F5 to compile and run * OS X: g++ mls-mpm88.cpp -std=c++14 -framework Cocoa -lpthread -O3 -o mls-mpm ./mls-mpm ** FAQ: Q1: What does "1e-4_f" mean? A1: The same as 1e-4f, a float precision real number. Q2: What is "real"? A2: real = float in this file. Q3: What are the hex numbers like 0xED553B? A3: They are RGB color values. The color scheme is borrowed from https://color.adobe.com/Copy-of-Copy-of-Core-color-theme-11449181/ Q4: How can I get higher-quality? A4: Change n to 320; Change dt to 1e-5; Change E to 2e4; Change particle per cube from 500 to 8000 (Ln 72). After the change the whole animation takes ~3 minutes on my computer. Q5: How to record the animation? A5: Uncomment Ln 2 and 85 and create a folder named "tmp". The frames will be saved to "tmp/XXXXX.png". To get a video, you can use ffmpeg. If you already have taichi installed, you can simply go to the "tmp" folder and execute ti video 60 where 60 stands for 60 FPS. A file named "video.mp4" is what you want. Q6: How is taichi.h generated? A6: Please check out my #include talk: http://taichi.graphics/wp-content/uploads/2018/11/include_taichi.pdf and the generation script: https://github.com/yuanming-hu/taichi/blob/master/misc/amalgamate.py You can regenerate it using `ti amal`, if you have taichi installed. Questions go to yuanming _at_ mit.edu or https://github.com/yuanming-hu/taichi_mpm/issues. Last Update: March 6, 2019 Version 1.5 ----------------------------------------------------------------------------- */ ``` ## Installing the High-Performance 3D Solver (This is for installing the high-performance 2D/3D solver including MLS-MPM and CPIC. If you want to play with the 88-line MLS-MPM, you don't have to install anything - see [here](https://github.com/yuanming-hu/taichi_mpm#88-line-version-mit-license-download-c--javascript-versions)) ### Linux and OSX Install [`taichi (legacy branch)`](https://taichi.readthedocs.io/en/latest/installation.html#ubuntu-arch-linux-and-mac-os-x). Then, in command line ``` ti install mpm ``` and it will install this taichi package automatically. ### Windows Support coming later. ## Run demos Every script under the folder `scripts/mls-cpic` is executable with `python3`. # Visualize the results - Outputs are in `taichi/outputs/mpm/`; - Install [Houdini Apprentice](https://www.sidefx.com/products/houdini-apprentice/) (which is free); - Create a `File` node in Houdini to visualize the `bgeo` (particles), `obj` (3D meshes), `poly` (2D polygons) files. # Python 3 API ## MPM.initialize (You only need to specify `res` in most cases. The default parameters generally work well.) All parameters: - res: (`Vector`) grid resolution. The length of this vector also specifies the dimensionality of the simulation. - base_delta_t : (`real`, default: `1e-4`) delta t - delta_x: (`real`, default: `1.0 / res[0]`) - particle_collision (`bool`, default: `False`): push particles inside level sets out (turn off when you are using sticky level sets) - pushing_force: (`real`, default: `20000.0`) If things do not separate, use this. Typical value: 20000.0. - gravity (`Vector`, default: `(0, -10, 0)` for 3D, `(0, -10)` for 2D) - frame_dt: (`real`, default: `0.01`) You can set to `1 / 24` for real frame rate. - num_threads: (`int`, default: `-1`) Number of threads to use. `-1` means maximum threads. - num_frames: (`int`, default: `1000`) Number of frames to simulate. - penalty: (`real`, default: `0`) Penetration penalty. Typical values are `1e3` ~ `1e4`. - optimized: (`bool`, default: `True`) Turn on optimization or not. Turning it off if you need to benchmark the less optimized transfers. - task_id: (`string`, default: `taichi` will use the current file name) - rigid_body_levelset_collision: (`bool`, default: `False`) Collide rigid body with level set? (Useful for wine & glass.) - rpic_damping: (`real`, default: `0`) RPIC damping value should be between 0 and 1 (inclusive). - apic_damping: (`real`, default: `0`) APIC damping value should be between 0 and 1 (inclusive). - warn_particle_deletion: (`bool`, default: `False`) Log warning when particles get deleted - verbose_bgeo: (`bool`, default: `false`) If `true`, output particle attributes other than `position`. - reorder_interval: (`int`, default: `1000`) If bigger than error, sort particle storage in memory every `reorder_interval` substeps. - clean_boundary: (`int`, default: `1000`) If bigger than error, sort particle storage in memory every `reorder_interval` substeps. - ... ## MPM.add_particles - type: `rigid`, `snow`, `jelly`, `sand`. For non-rigid type, see [Particle Attributes](#attributes) - color: (`Vector<3, real>`) - pd : (`bool`, default: `True`) Is poisson disk sampling or not? Doesn't support type: `rigid`, `sdf` - pd_periodic : (`bool`, default: `True`) Is poisson disk periodic or not? Doesn't support 2D - pd_source : (`bool`, default: `False`) Is poisson disk sampling from source or not (need to define`frame_update`)? Doesn't support 2D - For type `rigid`: - rotation_axis : (`Vector<3, real>`, default: `(0, 0, 0)`) Let the object rotate along with only this axis. Useful for fans or wheels. - codimensional : (`bool`, must be explicitly specified) Is thin shell or not? - restitution: (`real`, default: `0.0`) Coefficient of restitution - friction: (`real`, default: `0.0`) Coefficient of friction - density: (`real`, default: `40` for thin shell, `400` for non-thin shell) Volume/area density. - scale: (`Vector<3, real>`, default: `(1, 1, 1)`) rescale the object, bigger or smaller - initial_position: (`Vector`, must be explicitly specified) - initial_velocity: (`Vector`, default: `(0, 0, 0)`) - scripted_position: (`function(real) => Vector<3, real>`) - initial_rotation: (`Vector<1 (2D) or 3 (3D), real>`, default: `(0, 0, 0)`) Euler angles - initial_angular_velocity: (`Vector<1 (2D) or 3 (3D), real>`, default: `(0, 0, 0)`) - scripted_rotation: (`function(real) => Vector<1 (2D) or 3 (3D), real>`) Takes time, returns Euler angles - (Translational/Rotational) static objects are also considered as scripted, but with a fixed scripting function i.e. `tc.constant_function13(tc.Vector(0, 0, 0))` - linear_damping: (`real`, default: `0`) damping of linear velocity. Typical value: `1` - angular_damping: (`real`, default: `0`) damping of angular velocity. Typical value: `1` - ... # Particle Attributes * `jelly` - `E`: (`real`, default: `1e5`) Young's modulus - `nu`: (`real`, default: `0.3`) Poisson's ratio * `snow` - `hardeing` (`real`, default: `10`) Hardening coefficient - `mu_0` (`real`, default: `58333.3`) Lame parameter - `lambda_0` (`real`, default: `38888.9`) Lame parameter - `theta_c` (`real`, default: `2.5e-2`) Critical compression - `theta_s` (`real`, default: `7.5e-3`) Critical stretch * `sand` - `mu_0` (`real`, default: `136038`) Lame parameter - `lambda_0` (`real`, default: `204057`) Lame parameter - `friction_angle` (`real`, default: `30`) - `cohesion` (`real`, default: `0`) - `beta` (`real`, default: `1`) * `water` - `k`: (`real`, default: `1e5`) Bulk modulus - `gamma`: (`real`, default: `7`) * `von_mises` - `youngs_modulus`: (`real`, default: `5e3`) Young's modulus (for elasticity) - `poisson_ratio`: (`real`, default: `0.4`) Poisson's ratio (for elasticity, usually no need to change) - `yield_stress`: (`real`, default:`1.0`) Radius of yield surface (for plasticity) * ... ## Script Examples - Scripted motion: `scripted_motion_3d.py`. - Rigid-ground collison: `rigid_ground_collision.py`. - When you're making an rotating wheel example, e.g. `thin_wheels_fans.py` and the wheel is not turning in the right direction, you can try `reverse_vertices=True`. - ... # Notes - Matrices in taichi are column major. E.g. A[3][1] is the element at row 2 and column 4. - All indices, unless explicitly specified, are 0-based. - Use `real`, in most cases, instead of `float` or `double`. - Float point constants should be suffixed with `_f`, so that it will have type `real`, instead of `float` or `double`. Example: `1.5_f` (`float` or `double` depending on build precision) instead of `1.5` (always `double`) or `1.5f` (always `float`) - Always pull `taichi` (the main lib, *master* branch) after updating `taichi_mpm`. - When a particles moves too close to the boundary (4-8 dx) it will be deleted. - Whenever you can any compile/linking problem: - Make sure `taichi` is up-to-date - Invoke `CMake` so that all no source files will be detected - Rebuild - ... # Friction Coefficient - Separate: positive values, `0.4` means coeff of friction `0.4` - Sticky: -1 - Slip: -2 - Slip with friction: `-2.4` means coeff of friction `0.4` with slip # Articulation Syntax: ```$python object1 = mpm.add_particles(...) object2 = mpm.add_particles(...) mpm.add_articulation(type='motor', obj0=object1, obj1=object2, axis=(0, 0, 1), power=0.05) ``` * Rotation: enforce two objects to have the same rotation. - `type`: `rotation` - `obj0`, `obj1`: two objects - Use case: blabe and wheel in `water wheel` examples * Distance: enforce two points on two different object to have constant distance - `type`: `distance` - `obj0`, `obj1`: two objects - `offset0`, `offset1`: (`Vector`, default: `(0, 0, 0)`) offset of two points to the center of mass to each object, in world space - `distance` (`real`, default: initial distance between two poitns) target distance - `penalty` (`real`, default: `1e5`) corrective penalty - Use case: hammer in `crashing_castle` examples * Motor: enforce object to rotate along an axis on another object, and apply torque - `type`: `motor` - `obj0`: the `wheel` object - `obj1`: the `body` object - `axis`: (`Vector`) the rotation axis in world space - `power` (`real`, default: `0`) torque applied per second - Use case: wheels for cars, and legs for the robot - Example: `motor.py` * Stepper: enforce object to rotate along an axis on another object at a fixed angular velocity - `type`: `motor` - `obj0`: the `wheel` object - `obj1`: the `body` object - `axis`: (`Vector`) the rotation axis in world space - `angular_velocity` (`real`) - Use case: Fixed-rotation-speed wheels for cars, and legs for the robot # Source Sampling - If you want to source particles continuously from a object, please set `pd_source = True` in `add_particles` - `initial_velocity` should be a non-zero vector - Remember to also set `delta_t=frame_dt` in `add_particles`, which enables the frequency of sampling to be consistent with its initial velocity - There might be some artifact due to the effect of gravity. You can reduce that artifact by increasing `update_frequency`. - Example: `source_sampling.py`, `source_sampling_2d.py` ## Mathematical Comparisons with Traditional MPM # Performance # Bibtex Please cite our [paper](http://taichi.graphics/wp-content/uploads/2019/03/mls-mpm-cpic.pdf) if you use this code for your research: ``` @article{hu2018mlsmpmcpic, title={A Moving Least Squares Material Point Method with Displacement Discontinuity and Two-Way Rigid Body Coupling}, author={Hu, Yuanming and Fang, Yu and Ge, Ziheng and Qu, Ziyin and Zhu, Yixin and Pradhana, Andre and Jiang, Chenfanfu}, journal={ACM Transactions on Graphics (TOG)}, volume={37}, number={4}, pages={150}, year={2018}, publisher={ACM} } ```