# pytorch-tiny-imagenet **Repository Path**: mcgrady164/pytorch-tiny-imagenet ## Basic Information - **Project Name**: pytorch-tiny-imagenet - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2021-09-15 - **Last Updated**: 2024-04-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Pytorch-Tiny-ImageNet ### Requirements ``` torch, torchvision, cv2, livelossplot, unzip ``` Use run.sh to format tiny-imagenet into pytorch dataset format. cv2 must be installed before executing ./run.sh **Trouble shooting** with OpenCV [here](https://github.com/NVIDIA/nvidia-docker/issues/864#issuecomment-452023152) ### Summary Train tiny-imagenet dataset on ResNet18 using pretrained weight Resize tiny-imagenet dataset to 224x224 and train on ResNet18 using pretrained weight Finetune few layers, and use pretrained weight from 224x224 trained model to retrain 64x64 image on ResNet18 ### Test Result | Model | Test Result | Input size | pretrained weight | | -------- | ----------- | ---------- | ----------------- | | AlexNet | 35.88% | 64x64 | ImageNet | | ResNet18 | 53.58% | 64x64 | ImageNet | | ResNet18 | 69.62% | 224x224 | ImageNet | | ResNet18 | 69.80% | 64x64 | Model Above | ### Capstone Proposal Review https://review.udacity.com/#!/reviews/1541377